Professional Expertise Distilled

Oracle ADF Real World
Developer's

Jobinesh Purushothaman [PACKT] enterprise &8

professional experfise distilled

PUBLISHING

Oracle ADF Real World
Developer's Guide

Mastering essential tips and tricks for building next
generation enterprise applications with Oracle ADF

Jobinesh Purushothaman

enterprise

PUBLISHING
BIRMINGHAM - MUMBAI

Oracle ADF Real World Developer's Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2012
Production Reference: 1121012

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-84968-482-8
www . packtpub.com

Cover Image by Sandeep Babu (sandyjbegmail . com)

Credits

Author Project Coordinator
Jobinesh Purushothaman Arshad Sopariwala
Reviewers Proofreader
Dimitrios Stasinopoulos Maria Gould
Vikram Kohli
Sanjeeb Mahakul Indexer

Juan Camilo Ruiz Monica Ajmera Mehta

Acquisition Editor G"SahphlcslA
Rukhsana Khambatta eetal Aute
Aditi Gajjar

Lead Technical Editor
Dayan Hyames Production Coordinator

Shantanu Zagade

Technical Editors
Prasad Dalvi Cover Work

Jalasha D'costa Shantanu Zagade

Kedar Bhat

About the Author

Jobinesh Purushothaman works with Oracle as a Principal Solutions Architect
for the Oracle Application Development Framework. He has over 13 years of
experience in the software industry working on Java platforms and various
Java-based application frameworks. In his current role with Oracle, he is mainly
focused on helping internal and external customers with the adoption of Oracle
ADF. He is also involved in the design and architectural decisions of various
products using ADF and Java EE technologies, and occasionally he speaks at
industry conferences such as JavaOne and Oracle Develop. Links to his blog
articles may be found at http://jobinesh.blogspot . com.

Jobinesh holds a Master of Science (M.Sc) degree in Computer Science from
Bharathiar University, India, and a Master of Business Administration (MBA) from
Indira Gandhi National Open University (IGNOU), India. After completing his

M.Sc in Computer Science, he started his career in 1999 with MicroObjects Private
Limited, India. His career has taken him to different countries and companies where
he worked as developer, technical leader, mentor, and technical architect. Jobinesh
joined Oracle India Private Limited in 2008. Prior to joining Oracle, from 2004 to
2008, Jobinesh worked as Senior Software Engineer at the Emirates Group IT, Dubai,
where he was part of an IT strategy and architecture team.

Jobinesh currently lives in Bangalore, India, with his wife Remya and son Chinmay.

Acknowledgement

First and foremost, I would like to thank my parents (Mr. Purushothaman M.R and
Mrs. Ratnam K.N) for allowing me to realize my own potential. I would like to thank
my elder brother Biju for all the support he gave me throughout my life.

Thanks to my lovely wife, Remya, for her love, care, and understanding. Thanks to
my son, Chinmay, for being my inspiration in doing this work. I could not have done
this work without their support.

I sincerely thank and appreciate the team at Packt Publishing for their unconditional
support, professionalism, and commitment.

Thanks to all the technical reviewers for ensuring the quality of the book.
They include Dimitrios Stasinopoulos, Juan Camilo Ruiz, Vikram Kohli,
and Sanjeeb Mahakul.

Special thanks to Steve Munech (Senior Architect - Oracle ADF) for all the help
that he offered throughout my life at Oracle and also for teaching me Oracle ADF.

Many thanks to all members of the Oracle ADF development and product
management team for their support and guidance throughout the development
of this book. Special thanks to Sathish Kumar, Sung Im, Shailesh Vinayaka, J.R.
Smiljanic, and Ken Mizuta for their guidance on specific areas.

I would like to thank my manager at Oracle, Sharad Medhavi, for his
support throughout this project. Thanks to all my colleagues at Oracle
for their encouragement.

Last, but not least, Special thanks to Rajamani Saravanan, who worked with me
at Emirates Group IT (EGIT) Dubai, for teaching me excellence at work.

About the Reviewers

Dimitrios Stasinopoulos is a Certified Application Development Framework
Implementation Specialist with more than five years of experience in Oracle Fusion
Middleware and more specifically in ADF BC 11g. Dimitrios currently works for a
big project in the European Commission RTD, which includes technologies such as
ADF BC, BPM.

He has worked in the successful migration project of MedNet International as a
team leader and was part of the team that designed the migration from Oracle
Forms to Oracle ADF BC. In his spare time, Dimitrios is helping the ADF
Community by answering technical questions in the Oracle ADF and JDeveloper
forum, and maintains a blog about ADF where he writes his findings and his ideas:
dstas.blogspot.com.

Dimitrios holds a BS in Computer Science from the Technological Educational
Institution of Larissa, Greece.

Vikram Kohli is the founder of web startup PracLabs . com. He is passionate
about learning, teaching, and mentoring. He is an alumnus of XLRI, Jamshedpur,
and has completed his masters degree in computers. With more than seven years of
experience in the information technology industry, primarily in the Oracle Fusion
technology stack, Vikram has worked with the top IT companies in India. Since
starting in his college days, Vikram enjoys teaching and mentoring.

In addition to managing day-to-day operations and coding rendered to PracLabs,
Vikram teaches and provides consultancy in Oracle ADF to working professionals
around the globe.

Sanjeeb Mahakul is Senior Technical Consultant at Speridian technologies,
focusing on the Oracle Fusion stack. He has more than five years of experience and
more than three years of experience relevant to Oracle ADF and WebCenter. During
this tenure, he has worked on three end-to-end product development projects with
the Oracle Fusion stack. Prior to this he worked with Mphasis, an HP company and
Oracle Financial software services. Now he is an active member of the COE team and
is involved in the architectural design of Fusion products.

Sanjeeb is also an active member of OTN and the Oracle EMG group.

You can visit his LinkedIn profile at http://in.linkedin.com/pub/sanjeeb-
mahakul/15/429/9b9.

Juan Camilo Ruiz is a computer science information systems professional with
more than five years of experience in Java development tools and rich enterprise
application development. He is the Principal Product Manager in the Oracle
Development Tools organization, currently working for JDeveloper and ADF
(Application Development Framework), based in Redwood Shores, California.

Juan has worked with Oracle technologies that co-exist around Oracle ADF for more
than seven years, which include Oracle Portal, Oracle SOA Suite, Oracle WebCenter,
Oracle E-Business Suite, and Oracle Fusion Applications.

Juan was born in Bogota, Colombia and has a Bachelor Degree in Software
Engineering from the Pontificia Universidad Javeriana.

To my family for their unconditional love and support. Gracias.

www.PacktPub.com

Support files, eBooks, discount offers and more

You might want to visit www . Packt Pub . com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www . PacktPub. com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at servicee
packtpub. com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign up for a range
of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

@ PACKT! 15

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?

* Fully searchable across every book published by Packt

* Copy and paste, print and bookmark content

¢ On demand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books

Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents

Preface 1
Chapter 1: Getting Started with Oracle ADF 7
Introduction to Oracle ADF 7
Why Oracle ADF? 8
Oracle ADF architecture 9
View layer 11
Controller layer 11
Model layer 11
Business services layer 12
Comparing the Fusion web application technology stack to
the Java EE web application 12
View layer 13
Controller layer 13
Data binding layer 14
Business service layer 14
Developing with ADF 15
Setting up the development environment 15
Picking up the tool for development 15
Setting up the Software Configuration Management tool 16
Build tool 16
Team collaboration 17
Taking a quick tour of the JDeveloper IDE 18
Your first Fusion web application 20
Starting JDeveloper IDE for the first time 20
Picking up the right application template 21
Analyzing the generated metadata files 23
Connecting to the database 25
What happens when you create a database connection? 25

Generating the data model and business services 26

Table of Contents

Building entity objects to persist your business data 26
Building view objects to shape your business data 29
Building an application module to facade your business service implementation 30
What is there in your model project source now? 33
Building user interfaces from the model 34
What have you got in your view controller project source now? 36
Deploying and running the application 37
Running the application using an integrated webLogic server 37
Running the application on a standalone application server 38
Summary 38
Chapter 2: Introduction to ADF Business Components 39
Business service layer 40
Why ADF Business Components? 40
Overview of ADF Business Components 41
Oracle ADF Business Components' feature list 41
Core building blocks 42
Entity objects 43
Associations 44
View objects 44
View links 44
Row sets 45
Query collections 45
Application modules 45
Services and service data objects 46
Building a simple business service 46
ADF Business Components configuration files 49
Oracle ADF Model Tester 50
Using the ADF Model Tester to test the CRUD operations
on business data 52
Testing business methods 52
Java test client for ADF Business Components 53
Understanding the runtime behavior of ADF Business Components 55
Roles and responsibilities of the view object, row set,
and query collection 55
A closer look at query collection 56
What happens when you execute an entity-based view object? 58
What happens when you commit a transaction? 60

Summary 62

Lii]

Table of Contents

Chapter 3: Introducing Entity Object 63
Introduction 63
Ingredients of an entity object 64

Runtime collaboration between business components 65
Core features of ADF entity objects 66
Developing entity objects 66

Creating a database connection 66

Initializing the ADF model project 67

Creating entity objects 67

Choosing the database object type 68
Generating Java classes for entity components 69
Commonly used properties of an entity attribute 70
Attribute names in an entity object 71
Attribute types in an entity object 72
Using a resource bundle to localize Ul hint properties 73
Property set 74
Persistent and transient attributes 76
Specifying a default value for an entity attribute 76
Effective dated entity objects 78
Defining the primary key 79
Inheritance hierarchies in entity objects 80
Updatability of entity attributes 83
Refreshing attributes on posting changes to the database 83
Marking an attribute as mandatory 84
Checking data inconsistency by using the Change Indicator attribute 84
Queriable attributes 84
Tracking change history 85
Configuring Ul hints for an attribute 86
Specifying dependency attributes 86
Commonly used properties of an entity object 86
Setting an alternate key for an entity object 86
Specifying custom properties 87
Defining entity association 88
Retaining the association accessor row set 91
Adding validation 92
Concurrent access and locking 95
Securing entity objects 98
Enabling a batch update in an entity object 98
Working with entity objects 98

Programmatically creating an entity instance 98

Entity object in a transaction post cycle 100
Summary 103

[iii]

Table of Contents

Chapter 4: Introducing View Object 105
Introduction 105
Concepts and architecture 105

Ingredients of a view object 106
Core features of ADF view objects 108
Developing view objects 108

Creating view objects 108

Using the Create View Object wizard 109

Creating a view object with entity usage mapping 110
Creating a view object with SQL query 113
Creating a view object with static list 114
Creating a programmatic view object 114
Creating a declarative SQL mode view object 114
Optionally generating Java classes for a view object 116
Commonly used properties of view objects 117
Annotate attributes using Ul hints 118
Adding business rules 119
Working with view objects 120
List of values 120
Configuring the list of values 120
Linking two view objects 122
Where clause and Reverse Where clause 122
Inheritance hierarchies in view objects 123
Inheritance hierarchies in view objects with non-polymorphic entity usage 123
Inheritance hierarchies in view objects with polymorphic entity usage 123
Querying the datasource by using a view object 125
Specifying the query mode for a view object 126
Adding WHERE clause to a view object 128
Using bind variables 129
Changing the query of a view object at runtime 131
Programmatically sorting view object rows 132
In-memory filtering of row sets 132
View criteria 136

Effective dated view objects 142

Using alternate keys in a view object 143

Using findByKey() on view objects 144

Creating new rows through the view object 145

Creating child rows in composition association 145
View link consistency 147
Configuring view link consistency 147
How view link consistency works 148
Why does view link consistency fail when you add a dynamic WHERE clause? 149

What happens when you execute a view object? 151

Summary 155

[iv]

Table of Contents

Chapter 5: Advanced Concepts on Entity Objects

and View Objects 157
Taking a closer look at entity objects 157
Lifecycle of an entity object 158
Reading the current state of an entity row 161
Reading the originally retrieved attribute value 162
Retrieving all entity instances in the cache 163
Lifecycle callback methods of an entity object 163
What happens when a new entity instance is created? 164
What happens when an entity instance is modified or removed? 166
What happens when the transaction is committed? 167
Building programmatically managed entity objects 170
Generating a database independent unique ID 172
How does unique ID sequencing work 172
Using middle tier generated unique keys 172
Refreshing entity rows, forgetting the changes 173
Building custom history types 175
Taking a closer look at view objects 177
Lifecycle callback methods of a view object 177
What happens when a client invokes executeQuery() on a view object instance? 178
Count queries in a view object 180
Building programmatically managed view objects 180
Intercepting query generation for view criteria 181
Using a custom view criteria adapter 182
Overriding getViewCriteriaClause(boolean forQuery) in the view object
implementation class 183
Overriding getCriterialtemClause(ViewCriterialtem vci) in the view object
implementation class 184
Tips on overriding getViewCriteriaClause() and getCriterialtemClause()
in the view object implementation 186
Customizing the query at runtime 186
Customizing the query for a row set 187
Customizing the query for a view object 187
Passing parameters to a SQL IN clause using oracle.jpbo.domain.Array 188
Using oracle.jpo.domain.Array as a NamedWhereClauseParam value 189
Using oracle.jpbo.domain.Array as a bind variable value for a view criteria item 190
Defining a cascading list of values 193
Switching the LOV at runtime 197
Reading and writing XML data 199
Advanced data type techniques 202
Building custom data types using domain type 202
Working with BLOB and CLOB data types 204
BLOB and CLOB support for alternate databases 207

[v]

Table of Contents

Building business components dynamically 208
Building dynamic entity objects and view objects 208
Steps for building entity definition at runtime 210
Steps for building a view definition with entity usage at runtime 212
Personalized business components 215
Summary 217
Chapter 6: Introducing the Application Module 219
Introduction 219
Concepts and architecture 220
Ingredients of an application module 220
Additional core components 221
The core features of an application module 222
Defining an application module 223
Creating application modules 223
Optionally generating Java classes for an application module 223
Adding hierarchical view object instances to an application module 224
Overriding the default properties of an application module 225
Commonly used application module configuration properties 227
Modifying the JDBC data source name for an application module 229
Overriding properties for a view object instance 230
Declaratively applying view criteria to a view object instance 230
Sharing application module data 230
An alternative option to define a shared application module 232
Runtime behaviour of shared application modules 232
Query execution for a shared view object 233
Shared query collection cache management 233
The maximum weight of the query collection pool 234
Query collection weight 235
Consuming a shared application module 235
Accessing view objects defined in a shared application module through
a view accessor 235
Associating view criteria with shared application module instances 238
Nesting application modules 238
Accessing a nested application module from the parent 240
Working with an application module 240
Exposing the business service method through data control 241
Where do you write custom business logic in a fusion web application? 242
Invoking an application module from a Java client 243
Invoking a shared application module from a Java client 244
What you may need to know about programmatically releasing
an application module? 245

[vil

Table of Contents

What happens when a client creates an application module instance? 245
The lifecycle of an application module 247
Passivation activation of application modules 250
Programmatic passivation and activation of custom data 250
Storing business data at user session level 251
Using a transient view object 251
Using a user session data map 252
Using a client bound session map object 253
Using JDBC APIs in an application module 253
Using save points for undo operations 256
Programmatically configuring an application module 257
Programmatically building a master-child view object 259
Using ADF Business Components with Java EE components 260
Summary 262
Chapter 7: Binding Business Services with the User Interface 263
Introduction 263
Binding model data with user interfaces 264
Building a simple data bound web page 266
Is a view object really a data collection? 268
What happens when we drop a data collection on a page? 270
Taking a closer look at the ADF Model metadata files 271
adfm.xml 272
DataBindings.cpx 273
adf-config.xml 274
adf-settings.xml 275
Browsing through the page definition file 275
Parameters 275
Executables 275
Bindings 277
Using the binding editor 278
Programmatically accessing page binding elements 279
Accessing binding container 279
Programmatically accessing the parameter binding 280
Programmatically executing method action binding 280
Accessing the list control binding 282
Accessing the attribute binding 283
Accessing the iterator binding and associated view object 283
What happens when you access a Fusion web page? 284
Invoking an application module from a Java servlet 291
Using Configuration::createRootApplicationModule() in HttpServlet 291
Using ADF binding APIs in an HttpServlet 293

[vii]

Table of Contents

Adding custom phase listeners 295
Summary 296
Chapter 8: Building Data Bound Web User Interfaces 297
Introduction 297
The art of laying out pages 298
Organizing page contents — a case study 300
Adding actions to your page 303
Choosing between the managed bean method and the data control
method as event handlers 303
Using managed bean methods as event handlers 304
Using data control methods as event handlers 304
Building data bound table Uls 307
What happens when you drop a data collection as a table on a page? 308
Commonly used attributes of iterator bindings 309
What happens at runtime in a data bound table? 311
Adding edit functionalities for a table 311
Creating a new row 311
Deleting a row 313
Committing changes 313
Programmatically accessing a selected row from a table 313
Declaratively reading the attribute value from the currently selected row 315
Building data bound master-detail Uls 316
Building a master-detail data model 316
Building a master-detail Ul 316
What happens at runtime in the master-detail Ul? 317
Building a data bound tree table Ul 317
Building hierarchical view objects 317
Creating a tree table Ul 318
What happens when you drop a data collection as a tree table on a page? 320
Decorating the tree table Ul 321
What happens at runtime in a data bound tree table? 322
Synchronizing Uls using the target data source 323
What happens at runtime in the target data source? 324
Adding edit functionalities for a tree table 325
Configuring the parent view object to retain the view link accessor row set 325
Creating utility methods for reading Rowlterator and selected RowKey for
the selected node 325
Implementing create and delete methods in the application module 328
Creating a new row 330
Deleting a row 330
Programmatically refreshing the tree hierarchy 331

[viii]

Table of Contents

Accessing web tier values from business components 332
Using ADFContext to access client specific scoped variables 332
How does ADFContext provide uniform access across layers? 332

The pitfalls of using ADFContext 333
Passing web tier values as parameters to business service methods 333
Establishing a channel for passing web tier values to the business service layer 333
Using the user session data map to store values passed from the client 333
When should the client invoke the method that takes web tier values? 334
Making the user session data map passivation safe 334
Building data bound query search forms 334
Building the view criteria 335
Using Ul hints to control the display for a query component 337
Building a search Ul 338
What happens when you drop a view criteria as a query component on a page? 338
Commonly used properties of the search region binding 339
Initializing criteria item values using web tier values 340
Programmatically controlling the display of a query component 342
Programmatically retrieving view criteria used for a query component 344
Programmatically resetting a query component 346
Search on a tree table 346
What happens at runtime in a tree table search? 348
Building a data bound multi select list 348
Programmatically accessing selected rows 349
Overriding Ul hints in a view object 349
Summary 352
Chapter 9: Controlling the Page Navigation 353
Introduction 353
The navigation model in the JSF framework 354
Rule based navigation 354
Implicit navigation 355
How does implicit navigation work? 355
The navigation model in ADF 356
The ingredients of an ADF task flow 357
Task flow configuration files 357
ADF managed beans 358
What you need to know while using managed beans in JSF code? 361
Task flow activities 361
View activity 362
URL view activity 366

[ix]

Table of Contents

Method call activity 368
Router activity 370
Save point restore activity 371
Task flow call activity 376
Task flow return activity 376
Parent action 377
Building an unbounded task flow 378
Using a managed bean to return a dynamic outcome for
a navigation component 380
Conditionally executing a control flow case 380
Improving the readability of control flow cases 380
Adding an exception handler 381
Customizing the default exception handler 382
Building a custom javax.faces.context.ExceptionHandler 382
Using method call activity to initialize a page 385
Building a task flow with method call activity 386
What happens at runtime? 387
Building a menu model 388
Summary 388
Chapter 10: Taking a Closer Look at the Bounded Task Flow 389
Introduction 390
The properties of a bounded task flow 390
Building a bounded task flow 394
Working with bounded task flow activities 395
Marking an activity as the default activity 395
Marking an activity as an exception handler 396
Calling a bounded task flow using the task flow call activity 396
Using dynamic task flow calls 398
Commonly used properties for a task flow call activity 399
Using remote task flow calls 400
Parameterizing a bounded task flow 403
Defining a task flow input parameter 403
Specifying input parameter values for a task flow 403
Defining the task flow return value 406
Reading a return value from a task flow 406
Consuming bounded task flows as ADF regions 408
Dynamically displaying the task flow 409
Lazy loading of an ADF region 410
Refreshing an ADF region 411
Displaying task flows using a pop up component 412
Lazy activation for a task flow when displayed in a pop up 413
Using a contextual event for communicating to an ADF region 414

[x]

Table of Contents

Contextual event model 414
Using a contextual event 415
Defining an event publisher 416
Defining an event subscriber 418
Contextual event propagation at runtime 422
Dynamically adding multiple regions to a page 422
Distributing ADF task flow as the ADF library 426
Packaging the task flow into the ADF library 427
Consuming task flows added into an ADF library 427
Using a train component in a bounded task flow 428
Creating a train in a bounded task flow 429
Setting display names for train stops 430
Customizing the display for train stops 430
Programmatically navigating between train stops 432
Executing methods while navigating between train stops 432
Transaction management in a bounded task flow 434
What happens at runtime? 435
Programmatically managing transactions for a task flow 436
The life span of a bounded task flow 437
Summary 438
Chapter 11: More on Validations and Error Handling 439
Introduction 439
Adding validation rules in a fusion web application 440
Defining validations in the ADF view layer 441
Defining a custom ADF Faces validator 442
Defining validations in the ADF model layer 446
Defining validations in the ADF Business Components layer 447
Validations using custom domain objects 448
Where to put validation in a Fusion web application 454
Displaying validation exceptions on a page 454
Where in the page lifecycle does validation occur? 455
Client-side validation 455
Server-side validation 456
Error handling in ADF 457
Taking a closer look at DCErrorHandlerImpl 459
Programmatically throwing validation exceptions in
business components 461
Localizing validation error messages 462
Resource bundle usage in entity objects and view objects 462
Resource bundle usage in the application module 462
Reading the resource bundle definition from the business component 464

[xi]

Table of Contents

Programmatically throwing validation exceptions 464
Building a validation exception using message strings from the resource bundle 465
Validation class hierarchy 466
Wrapping exceptions 467
Programmatically throwing multiple RowValException 468
Programmatically throwing AttrValException 471
Customizing default business component error messages 473
Step1: Creating and registering a custom message bundle 473
Step 2: Customizing the DCErrorHandlerimpl 474
Step 3: Registering the CustomErrorHandler 476
How does the CustomErrorHandler implementation work? 476
Skipping validation 477
Skipping validations in the ADF Faces layer 477
Skipping validations in the business components 478
Summary 479
Chapter 12: Oracle ADF Best Practices 481
Introduction 481
Setting up the project structure for your Fusion web application 482
Single application workspace comprising of multiple
projects — monolithic approach 482
Multiple application workspaces controlled by a single master
application— microkernel approach 483
Guidelines for setting up the application source using the microkernel approach 484
How to avoid cyclic dependency between modules 486
The life span of ADF Business Components 488
Life span of an application module 488
How the framework allocates an application module for serving a client request 489
More configuration options for an application module 491
When an application module is removed from the pool 492
Life span of a view object, row set, and query collection in a regular
application module 493
The query collection cache and view accessor row set 495
The life span of entity objects 496
What if you want to clear an entity cache at specific points in time? 496
The life span of row sets in a shared application module 497
The life span of binding objects 498
The best practices and performance tuning for Oracle ADF 499
Tuning tips for an application module 499
Tips for optimizing an application module initialization 499
Tips for optimizing resource usages in an application module 501
Tips for fine-tuning the JDBC API use 502
Coding guidelines for application modules 503

[xii]

Table of Contents

Tuning tips for view objects
Tips for optimizing query execution in a view object
Tips for optimizing database read operations
Tips for setting a global row fetch limit for view objects
Tuning view criteria in view objects
Tips for optimizing LOV definitions
General tips for tuning view objects
Coding guidelines for view objects
Tuning tips for entity objects
Design guidelines for entity objects
Tips for validating entity objects
General tips for tuning entity objects
Coding guidelines for entity objects
Tuning tips for ADF model
Tips for tuning executable bindings
Tips for optimizing data traffic between a binding layer and business components
Tips for optimizing count query executions
Coding guidelines for ADF binding APIs
Tuning tips for ADF Controller and task flows
Tips for optimizing resource usage in a task flow
General guidelines for building successful task flows
Coding guidelines for managed beans
Tuning tips for ADF Faces
General tips for ADF Faces pages
Best practices for ADF Faces Ul components
Internationalization of Fusion web applications
Configuring the time zone for a Fusion web application
Ensuring high availability for Fusion web applications
How does a bean data control participate in session replication
in high availability mode?
Summary

Index

505
505
506
507
508
509
510
511

518
518
518
519
521

522
522
524
525
525

527
528
528
530

530
531
532

533

533

535

538
540

541

[xiii]

Preface

Oracle ADF is a powerful Java application framework for building next generation
enterprise applications. Oracle ADF in combination with JDeveloper IDE offers
visual and declarative approaches to enterprise application development. This
book will teach you to build scalable, rich enterprise applications by using the
ADF Framework, with the help of many real world examples.

This book discusses the ADF Framework in depth. This book is designed to take
programmers beyond visual and declarative programming model and enable them
to customize the framework features to meet the real world application development
challenges. Many of the framework features are discussed along with real-life use
cases and code samples which will definitely help developers to design and develop
successful enterprise applications.

This book starts off by introducing the development environment and JDeveloper
design-time features. As you read forward, you will learn to build a full stack
enterprise application, using ADF. You will learn how to build business services by
using ADF, enable validation for the data model, declaratively build user interfaces
for a business service, and enable security across the application layers.

What this book covers

Chapter 1, Getting Started with Oracle ADF, introduces Oracle Application
Development Framework (Oracle ADF) and its layered architecture. In this
chapter, we will develop a simple ADF web application.

Chapter 2, Introduction to ADF Business Components, gives an overview of ADF
Business Components, which includes discussion on some topics such as business
service layer, building a simple business service, Oracle ADF Model Tester,

and so on.

Preface

Chapter 3, Introducing Entity Object, explores the Oracle ADF technology stack in
depth. This chapter introduces the entity objects, which make up the persistence
layer of business components.

Chapter 4, Introducing View Object, discusses about the ADF view object, which is in
charge of reading and shaping the data for presenting it to the client. This chapter
explains architecture of a view object, its usage, and runtime behavior.

Chapter 5, Advanced Concepts on Entity Objects and View Objects, takes a deeper look
into the internals of view objects and entity objects. This chapter focuses on the
advanced concepts of these components along with code samples.

Chapter 6, Introducing Application Module,.discusses about the application module
component and the service layer for the business components stack. This chapter
covers the topics such as core features of an application module, defining an
application module, sharing of application module data, and so on.

Chapter 7, Binding Business Services with User Interface, shows how to bind user
interface for the data model built from ADF Business Components. This chapter
covers the topics such as binding model data with user interfaces, building a simple
data bound web page, browsing through page definition file, invoking application
module from a Java servlet.

Chapter 8, Building Data Bound Web User Interfaces, covers data bound UI development
in detail. This chapter discusses the power of model-driven Ul development support
offered by Oracle ADF Framework along with JDeveloper IDE.

Chapter 9, Controlling the Page Navigation, discusses about the offerings from the
ADF Controller layer to navigate back and forth between views in a Fusion web
application. This chapter discusses the basic navigation models provided by the
ADF Controller layer.

Chapter 10, Taking a Closer Look at the Bounded Task Flow, covers the topics such as
properties of a bounded task flow, building a bounded task flow, working with
bounded task flow activities, and so on.

Chapter 11, More on Validations and Error Handling, explains ADF validation cycle for
a page and the infrastructure for handling validation exceptions. This chapter covers
the topics such as adding validation rules in a Fusion web application, displaying
validation exceptions on a page at runtime, and so on.

Chapter 12, Oracle ADF Best Practices, discusses the best practices and coding tips
that developers will find useful when building ADF applications. Learning the best
practices will help you to avoid common pitfalls that others might have faced.

[2]

Preface

Chapter 13, Building Business Services with EJB, explains how Oracle ADF helps you to
declaratively build user interfaces for Enterprise Java Beans (EJB) based services. You
can download this chapter from http://www.packtpub.com/sites/default/files/
downloads/4828EN_Chapterl3 Building Business Services with EJB.pdf.

Chapter 14, Securing Fusion Web Applications, describes how you can visually
enable security in different layers of your Fusion web application. You can
download this chapter from http: //www.packtpub.com/sites/default/files/
downloads/4828EN_Chapterl4 Securing Fusion Web Applications.pdf

Appendix, More on ADF Business Components and Fusion Page Runtime, discusses
various useful features and techniques for ADF Business Components. This chapter
covers the topics such as page life cycle for a Fusion page with region, transaction
management in Fusion web applications, Building a dynamic model-driven UI with
ADF, and so on. You can download this appendix from http: //www.packtpub.com/
sites/default/files/downloads/4828EN_Appendix More on ADF Business
Components_and Fusion Page Runtime.pdf.

What you need for this book

The examples given in this book utilize the latest release of JDeveloper at the time

of writing, namely JDeveloper 11g Release 2 (11.1.2.2.0) Studio Edition. The Studio
Edition of JDeveloper comes bundled with the necessary ADF libraries and an
integrated WebLogic Server installation. Though all the samples are tested primarily
against WebLogic Server, they should also work on any ADF-certified application
server. In addition, to run examples you may also need an Oracle database with

the HR schema (which is a sample database schema). You can use Oracle Database
Express Edition (Oracle Database XE) for this which comes with the HR schema.

Who this book is for

If you are an ADF developer looking forward to building healthy and better
performing applications by using Oracle ADF, this is the best guide for you. You
need to be proficient with Java and need to know a bit of ADF before getting started
with this book.

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

[31]

http://www.packtpub.com/sites/default/files/downloads/4828EN_Chapter13_Building_Business
http://www.packtpub.com/sites/default/files/downloads/4828EN_Chapter13_Building_Business

Preface

Code words in text are shown as follows: "The adf-settings.xml file keeps the Ul
project configurations."

A block of code is set as follows:

import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;

import oracle.jbo.ViewObject;

import oracle.jbo.client.Configuration;

public class TestClient {
public static void main(String[] args) {

String amDef =
"com.packtpub.adfguide.ch2.model.service.HRServiceAppModule";

String config = "HRServiceAppModuleLocal';

ApplicationModule am =
Configuration.createRootApplicationModule (amDef, config);

// Work with your appmodule and view object here
//Find Department View Object Instance
ViewObject vo = am.findViewObject ("Departments") ;
//Execute Department query

vo.executeQuery () ;

//Fetch the first record

Row deptRow = vo.first();

printRow (vo, deptRow) ;

// Clean up resources
Configuration.releaseRootApplicationModule (am, true) ;

}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

RowIterator rowIter= DeptEOImpl.getEmpEO() ;
rowIter.reset();
while (rowIter.hasNext ()) {

Row row=rowlIter.next () ;

//Row represent Emp entity instance

[4]

Preface

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
Rebuild option allows you to fire an unconditional compilation on the source".

% Warnings or important notes appear in a box like this.

a1

~Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub. com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggeste@
packtpub. com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub. com. If you purchased this book
elsewhere, you can visit http: //www.PacktPub.com/support and register to have
the files e-mailed directly to you.

[51]

http://www.PacktPub.com
http://www.PacktPub.com/support

Preface

To locate easily, the example code files for each chapter are grouped under the
folders with the respective chapter numbers as names (for example, chapterl). Note
that each JDeveloper workspace folder contains a readme. txt file which explains the
ADF framework features exercised in that sample.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http: //www.packtpub. com/support.

Piracy

Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions

You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

[6]

mailto:copyright@packtpub.com

Getting Started with
Oracle ADF

In this chapter we will get an introduction to Oracle Application Development
Framework (Oracle ADF) and its layered architecture. We will also develop
a simple ADF web application towards the end of this chapter.

Here is the brief outline of the topics that we are going to cover in this chapter:

* Introduction to Oracle ADF

* Why Oracle ADF?

* Oracle ADF architecture

* Developing with ADF

* Your first Fusion web application

Introduction to Oracle ADF

Many of today's huge enterprise applications run on the Java Platform Enterprise
Edition (Java EE) platform. The core Java EE technology has been improved
considerably in the recent past. The Enterprise Java application development has
become much easier with annotations, dependency injection, Enterprise Java Beans
(EJB) 3.0, and Java Persistence API (JPA). However, if you take a closer look at the
core Java EE technology with a developer's eye, you may notice certain gaps in it:

e The learning curve is steep for a beginner

* Even experienced Java developers find it hard to understand, when
he/she goes deeper into the technology stack

* It lacks tooling support that provides a visual and declarative
development experience

* Java EE specification does not cover all the generic needs

Getting Started with Oracle ADF

The way to deal with these problems is to use a framework that abstracts the
complexity of the Java EE platform, adhering to standard patterns and practices.
The Oracle ADF framework is the most promising one in that category.

The Oracle ADF framework is a complete Java EE framework that simplifies

next generation enterprise application development by providing out-of-the-box
infrastructure services, and a visual and declarative development experience. In this
book, you will explore the core ADF features in detail with real-life code samples.

Why Oracle ADF?

The world moves very fast, and so does technology. It's very important for an
enterprise to have dynamic business applications aligned with a growing customer
base. In other words, an enterprise application should be smart enough to adapt with
the changes in the business eco system and scale with growth of the enterprise. Let
us take a look at some of the challenges of enterprise application development with
regard to the tools and technology:

* Choice of the right tool and platform: The right choice of the tool for
development is very critical for the success of any business applications.
The tool should be complete, matured, and flexible enough to meet the
requirements of different phases of an application lifecycle.

* The developer's productivity: The productivity of a developer is the
rate at which he/she delivers a quality software product that meets the
requirements of the customer. The developer's productivity is thus very
important for the success of a product. A tool, which can talk a common
language and provides a visual and declarative development experience, has
a significant impact on developers' productivity, especially if the application
development team is comprised of developers with different skills.

* One product and many customers: The unique needs of customers grow
more complex every day. In order for a product to do well in the market,
besides the generic features, it should also be customizable to meet the
unique needs of diverse user groups. A finished software product should
always anticipate changes to survive in the market.

* Businesses grow and so do the business users: Performance, scalability,
and reliability are really important for any enterprise application. An
enterprise application should handle increasing demands while maintaining
the acceptable performance levels. For example, when a business grows
for an enterprise, it may need to consider the large customer base. This
may eventually result in an increase in the number of active users for the
business applications used in the enterprise. The business application and the
underlying technology should be scalable enough to meet tomorrow's needs.

[8]

Chapter 1

There are many tools and technologies around us that build enterprise applications,
but if we need a tool, which is really capable of meeting today's challenges, the

list shrinks and we do not have much choice left. Oracle ADF is considered as one
among the few best frameworks for building a rich enterprise application.

The following is what makes Oracle ADF one of the best tools for building rich
enterprise applications:

End-to-end solution: The Oracle ADF framework provides complete
solution for building enterprise applications right from inception to
the post-production phase, addressing requirements from each layer
of applications.

Improved developer productivity: The declarative nature of ADF improves
the developer's productivity, allowing users to focus on the business logic of
the application, rather than focusing on technology complexity.

Rich Internet Application (RIA) and Web 2.0 enablement: ADF Rich Client
has over 150 rich user interface components, including various graphs and
charts, enabled with Asynchronous JavaScript and XML (AJAX). These are
model aware components, which can be easily wired to your business data
and make your web pages production ready.

Technology choice: Oracle ADF lets the developer choose multiple
technologies for each of the layers of the application and does not enforce
a specific technology or a specific development style on the developer.

Reference architecture: The enterprise applications built using ADF
inherit the layered architecture of the underlying ADF stack, without
leaving a chance for you to go wrong on choosing the right architecture.

Scalable architecture: ADF is shipped with a lot of tuning options to meet
the increased load of application in production. You are free to override the
default tuning parameters based on the usage pattern of the application.

Modular architecture: The Oracle ADF framework supports modular
architecture for enterprise scale applications. Multiple modules can
be bundled together to build a complete composite ADF application.
These modules are also reusable across multiple ADF applications.

Oracle ADF architecture

Oracle ADF has a well-proven, extensible, and layered architecture, which improves
the flexibility, maintainability, and scalability of an application.

What does that mean to you?

[o]

Getting Started with Oracle ADF

Some of the core benefits are as follows:

As an architect, you can pick up the best fitting technology from a wide range
of lists while building each of the layers. For example, ADF supports a variety
of ways to build business services, which include EJB or (JPA), web services,
simple Java objects, and ADF Business Components (ADF BC). On the client
tier, applications can choose from Java Swing, core Java Server Faces (JSF),
ADF Faces, or ADF, Mobile Ul Oracle ADF along with JDeveloper IDE, offers
consistent development experience across different technologies.

If the use case demands, your ADF application can be easily enhanced later
to use other technologies from Oracle Fusion Middleware Stack, such as
Service Oriented Architecture (SOA), WebCenter, and so on, with minimal
integration effort.

Oracle ADF follows the Model-View-Controller (MVC) design paradigm.
The layered architecture of the framework simplifies maintenance,
decouples implementations from interfaces, and improves reusability of
the components across applications. The layered architecture of the ADF
application is really useful when you need to build a User Interface (UI)
for various channels such as web, mobile, tablet, and desktop, reusing the
existing business services.

It is time for us to give a glance at the architectural building blocks of ADF to study
how are they put together to build high performing service-oriented applications.

Microsoft Excel
Mobile Mobile

ADF Swing ADF Desktop Native Browser JSF View
Integration

Client Client

ADF Desktop
Integration ADF Mobile JSF C

Servlet

ADF Binding Layer
Model

ADF Data Control Layer

ADF Business

Components EJB and JPA JAVA Web Services Business Services

Data Source Data Services

[10]

Chapter 1

View layer

The View layer contains the UI for the application ADF stack that supports the
following view technologies, targeting various presentation channels such as the
web browser, desktop, mobile, tablet PC, and Microsoft Excel:

* ADF Faces: Rich web Ul framework built on top of the Java Server Faces
(JSF) technology

* Apache MyFaces Trinidad: An open source JSF-based web framework (ADF
Faces components are based on Trinidad components)

* JSF: Core JSF web technology from the Java EE stack

* ADF Mobile: ADF Mobile supports both mobile browser client and mobile
native clients, which can run on smart phones and tablet PCs

* Microsoft Excel: Provides Microsoft Excel frontend for your ADF
business services

Controller layer

The Controller layer controls the flow of the application. ADF Controller is used

for the ADF Faces application, which provides an improved navigation and state
management model on top of JSF. The greatest advantage of ADF Controller over the
navigation model offered by core JSF is that it improves the modularity of the system
by splitting a single monolithic navigation model to multiple reusable navigation
cases known as task flows. Task flows are declarative solutions. Developers typically
do not need to write any code for defining navigation in applications. Apart from

the support for modular application design, ADF task flows also offer a declarative
transaction model and state management solutions.

Model layer

The Model layer binds the UI with business services, abstracting the implementation
details. The model layer is functionally divided into two components — data control
and data binding.

* Data control: Data control acts as a proxy cum adaptor for your
business services and decouples the view layer from the business service
implementation

* Data binding: Data binding abstracts the data access from data control and
provides a generic interface for invoking common operations

[11]

Getting Started with Oracle ADF

The ADF model layer plays a very vital role in the entire technology stack. It is the
model layer along with JDeveloper IDE that provides a visual and declarative Ul
development experience for the end user, irrespective of the technology used for
building business services. The glue code used for binding the UI with the data
model is plumbed by the model layer at runtime based on the binding metadata
definition

for the page.

Business services layer

The Business services layer provides access to data from various sources and handles
the business logic as well. ADF comes with out-of-the-box binding support for the
following technologies:

* ADFBC

* EJBs

* Web services

* Plain Old Java Objects (POJO)

* Business Activity Monitoring (BAM)

* Business Intelligence (BI)

You can choose any of these technologies for building the business services.

_ The Fusion web application in this book refers to the enterprise
% web application built using ADF Faces for the view, ADF Model
s for data binding, ADF Page Flow for the controller, and ADF
Business Components for business services.

Comparing the Fusion web application
technology stack to the Java EE web
application

ADF is built on top of the Java and Java EE stack. If you are familiar with Java EE,
this topic is for you. Let us take a quick look at the basic building blocks of these two
technologies to see what they have in common:

[12]

Chapter 1

View | JSF | | ADF Faces |
Controller | JSF Controller(FacesServiet) | | ADF Controller |
Model | col | | ADF Binding |

&

SessionBean / Java Class

&

Application Module

U

ADF View Objects

Session Facade/
Service Layer

JPQL

Data Access
Layer

JPA Entity Classes
Il dhtascadl

D
Data sources

View layer

JSF is a request-driven MVC web framework, which intends to standardize the
development of web-based user interface in a Java EE web applications. ADF Faces
forms the view layer of a Fusion web application. This is built on top of JSF with
lots of extra features, such as graphs and charts, a dialog framework, declarative
components, data streaming, embeddable task flows, and rich AJAX-enabled

UI components.

ADF Entity Objects
M cithad

{f

Controller layer

In a Java EE web application, it is the JSF controller that intercepts all the page
requests and dispatches them to the appropriate view along with the necessary data.
The JSF Controller also controls the page navigation. The ADF Controller is extended
from the JSF Controller to support modular web application development by
decomposing the single monolithic application into multiple reusable web modules,
termed as ADF task flows. Each task flow can have its own transaction attributes,
resource management, managed bean definitions, and navigation cases.

[13]

Getting Started with Oracle ADF

Data binding layer

The data binding layer of ADF (also known as ADF Model) is quite unique in nature
and does not have any real counterparts in the Java EE world. The ADF Model
decouples the UI from the business service implementation and provides a generic
binding behavior for the collection returned from the business services.

Conceptually, Context and Dependency Injection (CDI) does a similar welding
job for Java EE web applications, however, feature wise there are many differences,
which we will discuss in the coming chapters.

Business service layer

ADF Business Components simplifies the business services implementation by
freeing the developer from writing infrastructural code required by enterprise
applications. ADF Business Components mainly constitutes of the entity object,
view object, and application module.

The ADF entity objects are similar to the Java Persistence API (JPA) entities,
however functionality wise the former scores. The major advantages of the ADF
entity object are out-of-the-box support for caching of data in middle tier, matured
transaction management, declarative validation support, and the ability to trigger
the SOA process during the transaction post cycle.

The ADF view objects are data shaping components. The ADF view objects are
similar to Java Persistence Query Language (JPQL) in the Java EE stack. Some
of the advantages of ADF view objects over JPQL are the visual and declarative
development experience, support for building model-driven Ul, and declarative
state management.

The ADF application module is the transaction component that wraps your business
service —conceptually similar to a session facade built using a session bean in an
EJB application. However, we need to keep in mind that these two technologies are
in no way related in their underlying implementation, though at the end of the day
everything boils down to Java binaries and JDBC calls.

[14]

Chapter 1

Developing with ADF

The best way to learn technology is to start coding. In the next section, we will build
a simple web application and walk through the application source generated by

the development tool. In the coming chapters, we will analyze each piece in detail,
taking real-life use cases.

Setting up the development environment

Let us set up the environment for building applications with ADF. The development
environment setup includes setting up the Integrated Development Environment
(IDE), version controlling the source, picking up the right build tool, and setting up
team collaboration.

Picking up the tool for development

The success of a development framework is well complimented by a smart
development tool, which simplifies the creation of applications by using this
framework. Oracle JDeveloper is the IDE that we will be using for building
ADF applications. JDeveloper has better tooling support for ADF, covering

an end-to-end development lifecycle. You can download and install the
studio edition of the latest JDeveloper release from http://www.oracle.com/
technetwork/developer-tools/jdev/downloads/index.html. The studio
version of JDevloper comes packaged with Java EE and ADF libraries.

If you just want to try out Oracle ADF, installing studio version of
\ JDeveloper alone is enough to keep you going with the technology. In
~ this chapter, you will find some other discussion points such as versions
Q controlling the source, automated build process, and team collaboration.
These are required only in real-life enterprise application development
with ADF.

[15]

Getting Started with Oracle ADF

Setting up the Software Configuration Management
tool

Once you have decided on tools and technologies for development, the next step
may be to set up the Software Configuration Management (SCM) tool. SCM is the
task of tracking and controlling changes in the source code during the application
development. There are many source control tools available on the market.
JDeveloper is packaged with client support for Subversion (SVN) — the most
popular version control tool among Java developers. In fact, you are not limited

to SVN; JDeveloper can work with most of the popular tools if you have the right
extensions installed. The supported version control list includes Concurrent Version
System (CVS), Perforce, Serena Dimensions, Rational ClearCase, and so on.

w Tools window Help

Wersion Application. ..

Subversion b

Conneck to ADE
Conneck to CWS
Conneck to ClearCase
Conneck to Dinmensions
Connect to Perforce

Apply Pakch...

Build tool

JDeveloper has built-in support available for compiling and generating deployable
artifacts from the application source. This may be enough when you build less
complex applications. However, if you are building more complex enterprise
applications and the team size is fairly big, you may need to have automated build
support and a Continuous Integration (CI) process to improve the quality of the
work and fast delivery. In such scenarios, it's required to build the applications
outside of JDeveloper. Fortunately, we have multiple options available to address
such requirements. Let us take a quick look at the options that are available to build
the ADF applications:

* Built-in Make and Rebuild options on JDeveloper: When you right-click
on a project in JDeveloper and use the Make option, the IDE compiles source
files that have changed since they were last compiled, or have dependencies
that have changed. The Rebuild option allows you to fire an unconditional
compilation on the source.

[16]

Chapter 1

* Ant: Antis a Java-based build tool, which automates the build process.
JDeveloper has in-built support for using ant as build tool for projects.
To learn more about ant, go to http://ant.apache.org/index.html.

* Maven: Maven is a software management and build automation tool, which
bridges ant's shortcomings in many areas. You can learn more about Maven
athttp://maven.apache.org. JDeveloper provides basic infrastructure
support through which Maven can be used for building ADF projects. If
you plan to use Maven for building an ADF application, you may need
to follow some manual tasks such as adding all the dependencies to your
project's pom.xml and populating the Maven repository with the required
ADEF libraries.

To learn more about version controlling with JDeveloper and build
tools, refer to the Oracle Fusion Middleware User's Guide for Oracle
JDeveloper documentation. To access the documentation visit http: //
% www .oracle.com/technetwork/developer-tools/jdev/
’ documentation/index.html and navigate to Oracle JDeveloper and
ADF Documentation Library | User's Guide for Oracle JDeveloper. Use
the search option to find specific topics..

Team collaboration

When you work on larger projects, you may end up using different tools to perform
various tasks at various stages of the application lifecycle. Many of these tools do not
run co-operatively and may call for a lot of manual labor to get your job done. What
we really need is a platform that will integrate all these tools —making our life
easier. JDeveloper supports such a platform, which is shipped as Oracle Team
Productivity Center.

Oracle Team Productivity Center is a JDeveloper-based Application Lifecycle
Management tool that is useful when we work with a larger team spread across
different geographic regions in a connected network. The list of features includes
the following items:

* Team navigator, which enables multiple grouping of users and acts as an
access point for the team collaborative features

* A build dashboard displaying the nightly built test results on your IDE

* Chat window

¢ Administration console to manage users and teams

[17]

http://maven.apache.org/

Getting Started with Oracle ADF

The Oracle Team Productivity Center consists of three components:

* The Team Productivity Center client software: This is the JDeveloper client
software for the Team Productivity Center. As with any other JDeveloper
extensions, this can also be downloaded from the JDeveloper update centre.

* The Team Productivity Center server software: The server software
manages the connections between the team's Team Productivity Center
features in Oracle JDeveloper and data repositories such as a bug database,
feature wiki, or directory of product features and specifications.

* The Team Productivity Center connectors: As you may have imagined,
connectors are used for enabling the connection between the Team
Productivity Center client software, running inside JDeveloper and data
repositories such as bug-tracking systems, feature databases, and so on.
Standard connectors can be installed from the update centre. Even you
can build your own connectors, if needed.

In-depth coverage of the Team Productivity Center is beyond the scope of
this book. More details on the Oracle Team Productivity Centre including
% an installation guide and downloads are available at http: //www.
g oracle.com/technetwork/developer-tools/tpc/overview/
index.html.

Taking a quick tour of the JDeveloper IDE

Oracle ADF and JDeveloper go hand in hand. JDeveloper is aimed to simplify
your job as an application developer by providing visual and declarative aids
for development. Let us take a quick tour of the IDE to get familiarized with the
commonly used editor windows and tools.

[18]

http://www.oracle.com/technetwork/developer-tools/tpc/overview/index.html
http://www.oracle.com/technetwork/developer-tools/tpc/overview/index.html
http://www.oracle.com/technetwork/developer-tools/tpc/overview/index.html

Chapter 1

& Oracle JDeveloper 11g Release 2 - ADFDevGuideCh1 FirstApp. jws : ViewController. jpr

Bl Edt Wew fpokcation Refactr Seach Mwogate Fuld Run Versgnig ook Window Hep Testware Automation ADF
FoBa e X 0n0-0- & 4B a-b-3-14 Qr
Elagohention x BlrunManager © |[ADstsbas.. *] [@|dspartments.isf & | |departmentsPagelef i X (=] @ conponent Pastte * =
; — — =
5] AOFDevaudeChIFrstigp & | B - 1 Sow - ateh Curent Monkor Resohtion +| 8] | one B Y
= Prejects R V-E- =
w ;u .
"-3 Application Navigator Depatrwctld Depirtmenthame |Locationld |Managertd @ Button
¥ ._‘J #{,..Copartmentid.s #1. Departmerthian #1.. Locstionld ngu #4., Managarld.r @ Buten] Component Palette
=) Web Content v L i
@ [wee-ne | ‘ . & Butten
& [Page Flows. [0 contest Info
@] departments. jsf J |5 tcon
Tet 2 Selection
Ciata Views
| Applcation Resources =+ Manie anvd Tookars
[Connactions =) Layyout
R <! Operations. i
j Application Resource Panel Visual Editor
¥ Table - £1 - Propesty Inspectar a]
- Dt Cartroks By &2 @ a @
=) HeSarviceAppModieliat aControl =
- E Depatrierty! ' ; =
= @ ide _t] w
;naJ Data Control Panel Rendored: prrT— =P
- | camertadi v o formeft) afipagetenplatefptl - Fifacet —) altablest] = oh N =M
= = | Design| Sowrce Bindngs Freview History] ; .
VE departinerts.pf - Srutusre (3] Colrriselecton: | <dsfaut> (rers) |
™ (ElMessages - Logg © (|| L
& [Womings (2) Jug 14, 2011 9:10:51 AN AlDetadsEnabled: | cdefadt> (False) |
b -{IWICITTD KHTHL 1.0 TraresticnslEN | cxacle.adfdzinternal model. 1de, Jdev, JDevDatalontes LATRgeE e (# (bindings. DepartmertVO1 ool | v
] Fview . notifyhiterbopularingbacatontrols : .
- Qc-wm-m:w;ﬂ INPO: Nusber of data comtrols:l & Columes
LBy afimessages) = ""“""I Property Inspector
Structure Window EiStyle
5 TR o = Behavior
B Eﬂm 1 .
[fefocet - hmston Log Window = hdvanced
:;T:If:fm-n-ﬂ Messagrs | Extensions = » = || & Cusborization

Loadng dewguide. adf.chi firstapp.modsl entity DepartmentEC)

* Application navigator: The application navigator window helps us to
manage the contents and associated resources of an application. You
can create new projects and source files using the options available in
this window.

* Application resource panel: The application resource panel window
displays the application-level resources and configuration files. This
includes database connection information, metadata files used to
configure ADF Business Components, and so on.

* Data control panel: The data control panel displays the data collections,
attributes, built-in operations, and business methods from the business
services exposed through a data control registry. The exposed items from
the data control panel can be dragged-and-dropped on the U, which will
generate a metadata XML file to bind the business data with the Ul

[19]

Getting Started with Oracle ADF

* Structure window: The structure window displays a structural view of
the data in the document that is currently selected in the active window.
Structure window can be used to view or edit the contents. For example, you
can drag-and-drop components from any palette to the structure window.

* Visual editor: The visual editor window will help you to visually build the
Ul for ADF applications. It provides a visual WYSIWYG — What You See Is
What You Get—editor for HTML, JSP, JSF, Facelets, native mobile UI, and
Java Swing. The visual editor allows developers to visually lay out the UI.
Note that JDeveloper synchronizes the selection in the structure window
with the visual editor and vice versa.

* Component palette: The component palette window lists down available
components associated with the selected technology that you are using for
designing pages or for defining navigation.

* Property inspector: A property is a named attribute of a class or component
that can affect its appearance or its behavior. The property inspector displays
the exposed properties of the component selected in the structure window or
in the visual editor.

* Log window: The log window displays the logs from various components
such as compiler, audit rules, debugger, and profiler.

Your first Fusion web application

It's time for us to break the suspense and get a feel for the smart technology that we
are discussing. Are you excited? Good; let us jump start and build a simple Fusion
web application. During this course, we will also analyze the generated artifacts by
uncovering the magic behind visual and declarative development.

Our use case is very simple, primarily meant for giving you a feel of the
development environment and the basic configuration required for an ADF web
application to run. In this example, we will build a web application to display the
department details from the DEPARTMENTS database table.

Starting JDeveloper IDE for the first time

Once the JDeveloper installation is complete, you are ready to launch it for
application development. The first time JDeveloper is run, it will prompt
for selecting a role that matches your requirement, as shown in the
following screenshot:

[20]

Chapter 1

|£:| Select Role @
Zelect the role that matches your reguirements. ou can also change
roles using the Roles page in preferences.

Role:

© studio Developer (All Features)
Includes all features.

() Customization Developer

Configures the product for customizing metadata.
() Database Developer

Includes only features for core database development.
() Java Developer

Includes only features for core Java development.

() Java EE Developer

Includes only features for core Java EE development.

Always prompt for role selection on startup

| oK _Jl Cancel |

JDeveloper IDE enables appropriate features to be used based on the role that you
select on startup. The default role selected by the IDE is Studio Developer, which
includes all the features offered by the IDE. You will use the Studio Developer
role for building our first example, which we will discuss shortly. You can switch
to a specific developer role if you want to restrict IDE from displaying many other
features that are not relevant to the application that you are building.

Picking up the right application template

JDeveloper is packaged with a variety of application templates, which may help

us to set up the basic skeleton for applications leveraging well proven architectural
patterns. Based on the complexity of the application, you are free to extend this
basic structure by adding more projects later in the development cycle.

[21]

Getting Started with Oracle ADF

To create an application, perform the following steps:

1. Click on New Application within the Application Navigator tab in the
JDeveloper. This will display New Gallery with a set of predefined
templates targeting various technologies.

2. For ADF web applications, select the Fusion Web Application (ADF)
template and click on OK.

File Edit ‘ew Application Refactor Search Mavigate Buld Run VYersioning Tools ‘Window Help Testware Automation ADF
Goaag 96 YEBER 0 -0 ol Bk 98 - - A Qr [search

Application Mavigatar * E] @Start Page *

|E New Application...

EI Open Application...

= -
©- New Galle ry r‘s__<|

Available Thems

©

Q, search

Categories: Items: [] shew Al Descriptions

Java Deskbop Application
*= Stark Page - St

[?:l Application from EAR. File
-Projects
Business Tier
\--Business Inkelligence Cuskom Application
“Web Services

F Application Template

Database Application

All Teems Fusion Web Application (ADF)

Creates a databound ADF web application. The application consists of one project
faor the viewy and controller components (ADF Faces and ADF Task Flows), and
anaother project for the data model (ADF Business Components).

Java Desktop Application (ADF)
Java EE Web Application

_ Maven Application

ML Application

Help Ok Cancel

3. Once you select the Fusion Web Application (ADF) template, JDeveloper
will launch the Create Fusion Web Application wizard, which may let you
key in the application name and location to store the source files.

4. The next steps in the wizard will set up the basic skeleton for our application
by generating the Model and View Controller projects.

[22]

Chapter 1

As the names suggest, these projects hold your business services and UI-
related sources respectively. While navigating through the setup screens
for each project, you are free to change the default name of the project and
package name of your Java files. As this is our first application, let us leave
the default values set by the IDE as they are and finish the wizard.

Analyzing the generated metadata files

When you finish the Fusion web application generation wizard, the following files

are generated in your source folder. Let us take a quick look at these metadata XML
files to understand the role of each item in our application.

Applicatiun Mavigator * =]

ADFDeviELidechiFirstApp - -
=] Projects EY R IR AR T

=[5 YiewCantraler
BI:I Application Sources
DB META-INF
i fe2] adf-settings,ml
BI:I el Content
=7 WEB-INF
L_|E| adfic-config.sml
E Faces-config. sl
trinidad-config. sl
% wieb, =
=-[7] Page Flaws
LT;'. adfic-config

-] Application Resources

+~[] Connections

E-[77] Descriptors

i = META-INF
% weblogic-application. xml
&[] ADF META-INF

i adf-config. xml

.77 Maven PQMs

+| Data Conkrols &
+| Recently Opened Files

adf-settings.xml: The adf-settings.xml file keeps the Ul project

configurations. This file is present in the < project-root >/src/META-INF
folder.

[23]

Getting Started with Oracle ADF

faces-config.xml: The faces-config.xml file contains the configurations
for a web application built using JSF. This file allows us to configure
managed beans, data convertors, and validators used in the Ul, navigation
cases, global resource bundles, view handlers, page lifecycle phase listeners,
and custom lifecycle factory implementation for the application.

adfc-config.xml: ADF Faces is built on top of the JSF with a lot of extra
features, which are not covered by the core JSF. ADF Faces uses adfc-
config.xml to keep its configurations. As a Fusion developer, you should
use adfc-config.xml to configure the navigation cases and managed bean
definitions. To run your Fusion web application, you may need both faces-
config.xml and adfc-config.xml files—which is true even if you have not
added any custom configuration entries in faces-config. xml.

trinidad-config.xml: Apache MyFaces Trinidad forms the base for the
ADF Faces component set. In fact, Trinidad components earlier were ADF
Faces components, which were donated to Apache Software Foundation later
in the journey. By default, the generated trinidad-config.xml file contains
only the skin family name. However, trinidad-config.xml can be used to
override the default configurations for accessibility settings, locale settings,
state management, and so on.

web.xml: The web. xml file acts as deployment descriptor for a Java-based
web application. When you generate a Fusion web application by using
JDeveloper, a default web . xm1 file with default settings will be created for
you. The default entries include context parameters for configuring the
runtime state of the system, security filters, data binding filters for web
pages, and resource look up filters. The web . xm1 file also includes servlet
context listeners for initializing the management and monitoring services for
view and model layers.

adf-config.xml: The adf-config.xml file contains application-level
settings, which manage the runtime infrastructure — such as failover behavior
for the application modules, global fetch limit for all the view objects, caching
of resource bundles, automated refresh of page bindings, and so on—for
your application.

weblogic-application.xml: This file is the WebLogic Server-specific
deployment descriptor.

[24]

Chapter 1

Connecting to the database

The next step is to create a database connection that will be used later in the
development phase to generate the data model from database objects.

You can create a database connection by right-clicking on the Connection node
under the Application Resource tab and then choosing the New Connection option
to connect to the database.

We will be using the HR schema in our samples. The HRr schema is included with the
Oracle 10g or Oracle 11¢ database. While you define the database connection, key in
the credentials set for your local HR schema.

For building a sample application, you can also use Oracle Express Edition (Oracle
Database XE) as the database. Oracle Database XE is an entry-level, small-footprint
database. All the examples used in this book use Oracle Database XE as the database.
To learn about Oracle Database XE, visit http://www.oracle.com/technetwork/
products/express-edition/overview/index.html.

What happens when you create a database
connection?

When you create a database connection, JDeveloper generates a set of metadata XML
files to keep the connection information. Let us take a quick look at these files.

—| Application Resources

EI{:l Conneckions
=& Database
-2 HR
=[] Descriptars
=) META-INF

% jps-canfig.xm
P e % weblogic-application, xmil
=[] ADF META-INF
adf-config. xml

* connections.xml: This file contains the database connection detail that we
create for development. If your application consumes web services or map
viewer services, the corresponding connection uniform resource locator
(URL) will also be present in this file.

[25]

Getting Started with Oracle ADF

* Jps-config.xml: The jps-config.xml file is used to store the Oracle Platform
Security configurations. The location of this file is configured in adf -config.
xml. If your application is not configured to use ADF Security, this file, at a
minimal level, acts as a pointer to cwallet.sso, which contains the password
for the database connection details present in connections.xml.

* cwallet.sso: The cwallet.sso file follows the Oracle Platform Security
Services (OPSS) specification and it is used as a credential provider in
connecting to external systems, such as databases. This file is normally not
edited directly.

Generating the data model and business
services

The basic infrastructure required for building our first ADF application is in place
now. First, we will start the business service implementation by generating the data
access layer, followed by the business service layer exposing the services to client.

Our example uses ADF Business Components for building business services where
the data access layer is formed by entity objects and view objects. The application
module generates the business service layer.

Building entity objects to persist your business
data

Entity objects form the data model for your application encapsulating the persistence
behavior for items that are used in your application.

. An entity definition represents an object in the database such as table,
% synonym, view, and so on, and an entity instance Corresponds toarow
= from the database object. When you commit a transaction, entity objects
are responsible for posting the modified data back to the database.

[26]

Chapter 1

To generate an entity object, follow these steps:

1. Right-click on your model project in which you want to create entity, and
select New from the context menu. JDeveloper may respond with the New
Gallery dialog with a variety of options.

2. Inthe New Gallery dialog, expand the Business Tier node, select ADF
Business Components, and then select Entity Object. When you confirm
the selection by clicking on OK, JDeveloper displays the Create Entity
Object wizard.

® New Gallery E

Al Features Current Project Features

Q, search

Cateqgories: Items: ["] Shaw Al Descriptions
[#-General
=-Business Tier

Business Components Diagrarn

Default Data Model Components
usiness Inteligence

ata Controls Domain

i
';3 Entity Business Logic Unit

Entity Object

Launches the Create Entity Object wizard, which allows you to create an entity
object. Use entity objects to represent tables or UML entities and to implement

#-Clignt Tier business rules, To enable this option, you must select a project in the
& Database Tier Application Navigator, Before yvou can finish creating the new entity object, you
- treh Ti will be prompted to select {or create) a database connection.
~eh Tier
bk Tests wx zrza Property Set
- fll Thems
% Validation Rule
£2) view Link
%] view Object
Help OF Cancel

[27]

Getting Started with Oracle ADF

3. In the Create Entity Object wizard, you can browse through the schema
objects and select the table for which you want to create an entity object,
as shown in the following screen shot:

| é_-_(:reate Entity Object - Step 1 of &

- ' Package: |c0m.packtpub.devguide.adF.chl firstapp.model, entity | Browse..,
el MName
Mame: i i
+ attributes = [EntityObject |
Extends Entity: | | Browse. ..
} Property Sek: [<None> ']
[Data Source
= Select a data source for ywour entity object,
(3) Database Schema Cbject () Service Interface
Database Schema: [HR ']
Schema Object: | | Browse..,
Existing Object
® Select Schema Ob ject
Select Auko-Query if you want this search to execute auktomatically the next time
wou access this page.
Database Schema: [HR '] [] Auko-Query
Obiject Mame: | | Query
Object Type: Tables [|¥iews [|Synonyms [| Materialized Yiews S 22 ety e

Available Objects:
COUNTRIES

EMPLOYEES

1085
10B_HISTORY
LOCATIONS
PORT

PS_TN

Help OF Cancel

The remaining steps in the wizard's dialog will help you to modify the default
properties, such as data types, attribute names, and so on, for entity attributes, and
optionally generate Java classes to override the default behavior of entity objects.

In this example, we will generate an entity by selecting the DEPARTMENTS table
and modify the default name as DepartmentE0. We will suffix EO with all the
entity names in the examples used in this book to improve the readability of the
data model. We will skip the remaining steps, accepting the default values
generated by the IDE.

[28]

Chapter 1

Building view objects to shape your business data
Once the entities are generated, the next step is to define a mechanism to populate
entities from the database tables. ADF Business Components uses view objects for
querying the database.

In a very simplified form, a view object contains a query to retrieve data
" from the datasource and data shaping logic to be used by the client.

To generate a view object, follow these steps:

1. Right-click on your model project in which you want to create a view,
and select New from the context menu to get the New Gallery window.

2. Inthe New Gallery dialog, expand the Business Tier node, select ADF
Business Components, and then select View Object. When you confirm the
selection by pressing OK, JDeveloper will display the Create View Object
wizard as shown in the following screenshot:

® Create View Object - Step 1/ of 9

MName
§ " Package: |com.packtpub.devguide.adf.chl.firstapp.model.view | Browse,
el Name
| 2
T Entity Obiscts Mame: |DepartMentVO |
] Display Name: |Depart Ment Yo | Q
I Extends: | | Browse,
T Property Set: | <Nones =
l Drata Source:
l () Entity object
! () 30L query
() Programmatic
() Skatic list
Help Mext = Cancel

[29]

Getting Started with Oracle ADF

3.

In the first step of the Create View Object wizard, you can key in the
name and select datasource for the view object. In this example, we will
build a view object for the DepartmentEO entity object that we created

in the preceding section. Modify the default name for the view object as
DepartmentVo. We will suffix vo with all the view names in the examples
used in this book to improve the readability of the data model. Click on
Next to continue the wizard.

In the Entity Objects page of the wizard, select the entity object(s) for which
you are building the query. In this example, you will select DepartmentEO
and click on Next to continue.

The Attributes page displays the attributes from the selected entity
objectsfrom the preceding step. You can select the attributes you want to
include from each entity usage in the Available list and shuttle them to
the Selected list. For DepartmentVO, we will select all the attributes of
DepartmentEO by shuttling them to the Selected list.

You can continue with the wizard further if you want to customize the
default settings of the view object by altering the default attribute properties
that are originally copied from the entity object. The wizard will also let you
override the default query in the next step. As the default settings are good
enough for DepartmentVO used in our example, we will skip these steps by
clicking on Finish.

Building an application module to facade your
business service implementation

We carried out the data access layer implementation in the preceding section
step. The next step is to expose the business services to the client through the
application module.

The application module(s) wrap(s) the business service and data model of

your application. An application can have multiple application modules

depending on the complexity and logical grouping of the services.

[30]

Chapter 1

To generate an application module, perform the following steps:

1. Right-click on your model project in which you want to create an application
module, and select New from the context menu.

2. Inthe New Gallery dialog, expand the Business Tier node, select ADF
Business Components, and then select Application Module. After clicking
on OK, JDeveloper will display the Create Application Module wizard,
as shown in the following screenshot:

© Create Application Module - Step 1 of 5

Name
‘T" Name Package: |c0m.packtpub.devgulde.adf.chl.Flrstapp.model.serwce | Browse. ..
+ Data Model Marne: |HRServicenppM0duIe |
Display Mame: |Hr Service App Module | Ck
} Extends: | | Browse. ..
& Property Set: | ZNone> '|
Help et = Cancel

3. On the Name page, you can key in the name for the application module and
optionally modify the package name. This example names the application
module as HRServiceAppModule. Click on Next to continue the creation of
the application module.

[31]

Getting Started with Oracle ADF

4.

 Create Application Module - Step 2 of 5

The Data Model page of the wizard will let you expose the view object
instances to the client by shuttling the view object(s) from the Available

list to Data Model. In this example, we will add DepartmentVO to the
application module as the DepartmentVO1 instance, which can be
consumed from the client later. Either you can finish the wizard at this stage,
leaving the default values set by the IDE as they are, or continue the wizard.

Data Model
@ Name " Select a view object from the Available tree, select the desired parent instance or application module From the Data Model tree, and
T f— use the shuttle control ko create a named view instance in the data model,
@ Data Model
_I P allable Wiews Objects: Data Model: Subtypes,.. Edi...
T com.packtpub, devguide, adf.chi . firstapp.model. Model [ﬁ HR:ServiceAppModule
T -l com.packtpub, dervguide. adf . chi firstapp, model view L g_fl Departmentyol
P D epartment o
b
3
Mew Yiew Instance: Departrmentyioz View Instance: Departmentyol
Wiews Definition: com.packtpub. devguide, adf.chl.first...
Help < Back Mext = Einish Cancel

If you continue the wizard, the Application Modules page may help you
to nest another application module (if any) under the current one to build
composite services. The Java page of the wizard can be used to optionally
generate the Java files for the application module, which can be used

for adding custom business service methods. These steps can even be
performed later during development by editing the existing application
module definition.

You can also generate entity objects, view objects, and
_ application modules in a single go by choosing Business
% Components from the Tables option displayed in the
L= New Gallery window. This feature may save you time,
especially when you work on simple applications, proof of
concepts, or demos.

[32]

Chapter 1

What is there in your mod

el project source now?

When you finish generating business components from the database tables by
following the steps that we have discussed earlier, JDeveloper will generate
metadata XML files and optionally Java classes to hold component definitions for
entity objects, view objects, and application modules. Let us take a quick look at the
model project source for our example generated by the wizard.

.D.pplicatinn Mavigator =
ADFDevEUideChlFirstApp
=l Projects

E|--- Madel
=[] Application Sources

-l adf
=1l chl

=

E]--- YiemController

Z-/fl com.packipub, desquide

EIHII firstapp

%5 Model.jpx

model

1l entity

DepartrmentECD

[ifll service

1];‘ HR.ServicedppModule
i view

E] Departmentyio

E ModelBundle. properties

of the DEPARTMENTS table that we s

DepartmentEO.xml: The DepartmentEO.xml file contains the name

elected for generating the entity

and attribute definitions, reflecting the properties of the columns

from the DEPARTMENTS table.

DepartmentVO.xml: The Departmentvo xml file contains attribute

definitions copied from DepartmentEO. this file also contains a query

to fetch department records.

HRServiceAppModule.xml: The HRServiceAppModule .xml file contains

information about the view object instances and optional service method
definitions. The view object instance used in our example is DepartmentVvo1l.

beaj.xcfg: The be4aj . xcfg file contains metadata information about

the application module such as name, database connection, runtime

configuration, and so on.

[3

3]

Getting Started with Oracle ADF

* Model.jpx: The <model-project-names>.jpx file is used by both ADF
design-time tools and runtime components. The . jpx file contains the
pointers to business component definitions in the model project, where each
entry describes the package name and type of business components in the
package. In more complex applications, it may also contain metadata for the
shared application module, which is primarily used at runtime to share the
same data between clients. This file is located in the package folder for your
model project.

When you create an application module, JDeveloper IDE automatically creates a
data control that contains all the functionality of the application module. You can
click on the refresh icon in the Data Controls panel window to view the data control
generated for the application module that you added to the model project.

The data control exposes the following:

* View object instances as named data collection
* Built-in operations on data collection and custom business methods

You can design a data bound user interface by dragging an item from the Data
Controls panel and dropping it on a web page as a specific Ul component.

Building user interfaces from the model
The next step is to build the user interface for the business services. This is easy if
you use ADF data binding, as we will see in this section.

To create a web page, perform the following steps:

1. Right-click on the view controller project and select New.

2. In New Gallery, expand Web Tier, and select JSF/Facelet. Select
Page as item. Confirm the action by clicking on OK. Refer to the
following screenshot:

[34]

Chapter 1

= Mew Gallery

All Features Current Project Features

This list is filtered accerding to the current project's selected features.

sl

Q, Search
Cateqgaries: [tems: [] Show All Descriptions
[#-General Page

Business Tier
Client Tier
Database Tier
Web Tier

J5P
i -Serviets
ol Ttems

Help

SFFacelets

Launches the Create JSF Page dialog, in which you create a new JavaServer
Faces 2.0 page that can be implemented as a Facelets or JSP document. To
enable this option, you must select a project or a file within a project in the:

Application Navigator.
% ADF Dedarative Component
f ADF Page Fragment
[ADF Page Template
[& ADF Skin
3 ADF Task Flow
[} ADF Task Flow Template

% Composite Component

[N I,

Cancel

3. In the Create JSF Page dialog, you can key in the name for the page and
optionally select a template. We will use the Oracle Three Column Layout

template to build the departments.jsf page for our example.

[35]

Getting Started with Oracle ADF

4. You can use the drag-and-drop offerings from JDeveloper to visually lay out
controls on a page. To build a UI table displaying data from the departments
view object, you just need to drag the instance of the departments view from
the Data Controls panel and drop it on the page by choosing the desired
display component available in the list. The following screenshot illustrates
this feature:

Application Mavigator * E] @departments.jsf x

ADFDevGLideCh1FirskApD v [&] ~|) ~ | show ~|Makch Current Maritor Resolution = | [@] | [Mone v | DeFault -
=| Projects Bl#@ VT %=
Model

E!--- ViewController

(-] Application Sources j |
-] Web Content

=| Application Resources

-] Connections Create
D Descriptors e Carousel
=| Data Contrals W7 Eorm 4
=[5 HRSarviceAppModuleDataContral Gankt 4
E| EIoepartmentyol - Gauge...
CiepartmentId Geagraphic Map 4
=2 DeparkmentMame Graph...
=3 LocationId Multiple Selection »
&3 ManagerId Mavigation]
D Operations Single Selection]
- 21 Named Criteria ## ADF Table. ..

[L% Al Queriable Attributes Thematic Map... [aDF Read-only Tabls,.,
-7 Operations Tree [aDF Read-only Dynamic Table

ADF Pivot Table. ..
-

-

Caneel

+| Recently Opened Files

| Fiview w > afidocument#dl = » af:form#f1 « » af:pagetemplate#ptl ~ > Rfacet

What have you got in your view controller project
source now?

It will be interesting to take a look at the viewController project source at this
stage. When you drag-and-drop the departments view object on the page, the IDE
generates two metadata XML files to enable the data binding for the page.

* departmentsPageDef.xml: The department page definition XML file is used
at runtime to fetch the data when you access the page through the browser.
This file will act as binding container for the web pages.

* DataBindings.cpx: The DataBindings. cpx file defines the binding context
for the entire application. This file acts as the registry for page definition files.
It also holds metadata for the business services implementations.

* adfm.xml: The adfm.xml file acts as the registry of registries, holding
pointers to each registry metadata file used in the project. In our example,
adfm.xml contains the path for the bataBindings. cpx file.

[36]

Chapter 1

Applicatiu:un Mavigakor * [:]
ADFDevGLideCh1FirstApp - -
=| Projects @ Eﬁ ?' o=

Model
=53] ViewController
=] Application Sources
=1l com.packtpub. devguide
=/l adf
=-{fll chl
-1 Firstapp
El,lﬂ] Ui
Elgﬂ] pagelefs
L @ departmentsPageDef xml
- E DataBindings.cpo:

=) META-INF
. adfrr.xml
adf-settings. xml
Z-{_7) Wweb Conkert
- [WEB-TNF
D Page Flows

....... [@] departments. jsf

Deploying and running the application

Wow ... congratulations! You are done with the implementation even without
writing a single line of Java code! We can run this application either by directly
a deploying to the application server integrated with JDeveloper, or generating
deployable artifact from the application source and then installing to the

target server.

ADF applications are certified against Oracle WebLogic and IBM
% WebSphere Servers. Oracle ADF essential (free version of ADF)
’ version is also certified against GlassFish 3.1 (or higher).

Running the application using an integrated

webLogic server

To run your page by using integrated WebLogic Server, select the . jsf page in
the application navigator, right-click on it, and choose Run. When running a page
by using the integrated application server, JDeveloper creates an exploded EAR at
a location that has been pre-configured for the server to look at. Then, the server
follows the normal deployment process.

[37]

Getting Started with Oracle ADF

Running the application on a standalone
application server

To deploy the application to a standalone server, we may need to prepare the
application for deployment. This involves creating deployment profiles for each
project and then generating a deployment profile for the whole application,
including the required projects. Deployment profiles can be generated by choosing
the New Deployment Profile option in the New Gallery window on your
JDeveloper.

The last step is to generate the deployable artifacts, such as an Enterprise Archive
(EAR) file, for the application by choosing the already created deployment profile.
The Deploy option is available in your JDeveloper under the Build menu of

main toolbar.

I L
To learn more about deploying an ADF application to a standalone

sever, refer to the Oracle Fusion Middleware Administrator's Guide
* documentation. To access the documentation visit http://
% www.oracle.com/technetwork/developer-tools/jdev/
T documentation/index.html and navigate to Oracle JDeveloper
and ADF Documentation Library | Administrator's Guide. Use the
search option to find specific topics.

Summary

In this chapter, you were introduced to Oracle ADF, its layered architecture, and
the advantages of using ADF as an enterprise platform to build next generation
applications. We also set up the development environment to use JDeveloper and
ADF, and built a simple application to get a feel for the technology stack. This
chapter is essential for the easy understanding of what we will learn in the rest of
the book. In the coming chapters, we will examine various parts of the Oracle ADF
framework in detail.

In the next chapter, we will discuss ADF Business Components, used for building
your business services.

[38]

Introduction to ADF
Business Components

The crux of any enterprise application is its business logic implementation.

The business service layer of a fusion web application is built using Oracle ADF
Business Components. This chapter gives you an overview of ADF Business
Components, which includes discussion on the following topics:

Business service layer

Overview of ADF Business Components
Building a simple business service
Oracle ADF Model Tester

Java test client for Business Components

Understanding the runtime behavior of ADF Business Components

The intention of this chapter is to provide you with a brief description of ADF
business components. This should hopefully help you to understand the larger
picture when we discuss individual business components in the next chapters. If
you are already familiar with ADF Business Components, you are free to skip this
chapter and move on to the next chapter.

Introduction to ADF Business Components

Business service layer

Business logic for an application resides in the area between the Ul layer and
datasource, fulfilling the requests from the client by interacting with the datasource
or other third-party services. A well designed application may have multiple
layered structures for business service implementation, where each layer plays

a unique role by improving the extensibility of the entire architecture. Let us

take a quick look at the various layers found in a multilayered business

service implementation:

* Service layer: This layer defines the service contracts to be used by a client.
The Service layer receives the message sent from the client and delegates it
to the appropriate business logic implementation for further processing. The
advantage of having a service layer is that it decouples the implementation of
services from the service contract, which makes an application more flexible
and extensible.

* Business logic layer: This layer defines the business logic that is required to
perform specific tasks for an enterprise application. The business logic layer
is responsible for representing the core business of the system.

* Data access layer: This layer is responsible for reading from and writing to
a datasource such as a database, file store, or third-party API.

The following diagram illustrates a multilayered business service implementation:

)) Data I

Service Business Access

Layer Logic Data
Layer

Source

T1°7

Why ADF Business Components?

This section discusses the advantages of using ADF Business Components for
building business services. Business service implementation for any enterprise
application generally involves the following three major tasks:

* Building business logic for the application

* Building generic infrastructure services such as connecting to a database,
transaction management, business data audit, validation, security, and
product customization

[40]

Chapter 2

* Exposing the services through multiple channels such as EJB, web service,
or plain Java to be used by various clients

You, as a developer, may agree that life will be much easier if the underlying
technology stack provides the generic infrastructure services required for an
enterprise application out of the box. These offerings may free the developers
to focus on business logic implementation, eliminating the complexity of the
underlying technology.

ADF Business Components and JDeveloper simplify the business service
implementation by addressing the aforementioned generic concerns. In the next
sections, we will examine how ADF Business Components eases Java EE application
development, and what makes this technology an ideal tool to build business
services for rich enterprise applications.

Overview of ADF Business Components

ADF Business Components along with JDeveloper provide a visual and declarative
development approach for building business logic for an application. By default,
business components are configured by using XML metadata files. At runtime, the
ADF framework uses the configurations stored in metadata XML definition files for
instantiating appropriate business components. If you want to override the default
behavior of the business components offered by the framework or want to add
custom business logic, then you can generate Java implementation for the desired
business components and add your logic there. To customize the default behavior
of business components, you must override the appropriate methods from the
default base class.

Oracle ADF Business Components' feature
list

Oracle ADF Business Components offers many features which are not typically
found in other development tools. Let us take a quick look at the ADF Business

Components' feature list to understand what makes it a first-class citizen for
building business services:

* Oracle ADF Business Components provides a visual and declarative
development experience. Business component definitions are kept in XML
files and optionally generate Java implementation to write the custom
business logic.

[41]

Introduction to ADF Business Components

ADF Business Components are built using Object Relational Mapping
(ORM) concepts by abstracting the underlying data source from
the developer.

Oracle ADF Business Components provides design-time support for
exposing business service implementation as web services with very
minimal or zero coding.

Layered architecture of business components improves the reusability
and extensibility of each piece used for building the business services.

Oracle ADF Business Components provides built-in support for managing
database connection and middle tier transaction.

ADF supports building model driven UI components. In this approach,
the framework builds UI components on the fly by using UI hints present
in the view object's XML metadata file. The list of values (LOV) and query
components are built by leveraging this feature.

ADF allows you to declaratively synchronize the master and details
collection displayed on a page. You can declaratively enable master
details co-ordination at the model, which can be leveraged by the
binding layer to synchronize the master and detail data display

at runtime.

ADF offers infrastructure services such as paginated queries, validation,
security, concurrency management through locking, and business

data auditing. The framework also offers declarative tuning support

for business components.

Core building blocks

In this section, we will see the core building blocks of business services built by
using ADF Business Components. The items in the ADF Business Components
stack are shown in the following diagram:

[42]

Chapter 2

Service Layer

Business Logic

Application Module

View Link Instance]

O— View Object Instance

(O— Business Methods
O—

Generic Infrastructure
Methods

O Nested
Application Module

Data Access Layer

View Objects

O— |view Object Instance|>_] > | View Object

Entity Objects

Data Source

~

] [Entity Object
| : :
! View Link ' !
| | Association |
1 View Object | |
! ! Entity Object | |
| 1 I
! i |
! i i
! i |
1 i i

,,,,,,,,,,,,,,,,,,,,,,,,

Oracle ADF Infrastructure Services

Entity objects

In simple words, an ADF entity object represents a database table and an entity
object instance represents a single row in that table. The entity object encapsulates
application data, validation rules, and persistence logic. An entity implementation

has the following artifacts:

* Entity object definition XML metadata file: This file stores the entity object
definition and declarative settings to control the runtime functionality of the

component.

* Entity definition: The entity definition describes the structure of an entity
object and acts as a template for defining the entity instance at runtime. This
is generated at runtime, using the entity object definition XML metadata file.

* Entity object: An entity object represents an entity instance, which wraps the
business logic for a row in the datasource.

[43]

Introduction to ADF Business Components

* Entity collection: The entity collection caches queried rows for a particular
entity implementation. The entity cache is associated with the entity object's
oracle.jbo.server.DBTransaction object. In other words, entity rows
for a particular entity type share the same entity cache only if they are
participating in the same transaction.

Associations

Entity object associations define the relation between two entity objects based on
the attributes from each side. Associations are useful to access the destination entities
from a source entity and vice versa. For example, consider a department and an
employee as entity objects. A department can have many employees. This relation
can be represented by using association. The number of elements in each side of the
association is decided by the cardinality property. When you define association, IDE
generates accessor attributes in entities participating in association. These attributes
can be used for accessing related entities.

View objects

An ADF view object contains logic for reading data from a datasource. It fetches a
row set from a datasource and shapes each attribute in a row for presenting them to
the client. View objects can be built based on entity objects, a SQL query, or a static
list. A view object is composed of the following parts:

* View object definition XML metadata file: The view object definition is
stored in this file, which contains the query and structure definition of each
row in the datasource.

* View object definition: The view object definition acts as a Java wrapper for
the XML metadata file.

* View object: The view object instance manages the query execution
life cycle. To intercept the query execution and data population logic,
developers can override methods in the default implementation class
provided by the framework.

* View row: This is a row in the query result.

View links

ADF view links define the relation between view objects. A view link will help you

to access the row set present in the destination view object from the source view row
and vice versa. View links are defined by mapping attributes of the view object to
attributes of a depended view object. If the view object is built using entity objects, the
view link can also be defined by choosing the association definition that exists between
underlying entity objects. View link is useful for building a master-detail UL

[44]

Chapter 2

Row sets

View object uses a special data structure known as row set to manage the collection
of rows from a query on datasource. The row set contains bind parameter values
used in the query, and a default row set iterator implementation to iterate rows from
the query. A view object can have multiple row sets. The primary row set used by a
view object is termed as default row set. When a view object is executed, by default,
it uses the primary row set to hold the rows. The other row sets, which are created
explicitly by the client, are secondary row sets.

Query collections

The query collection caches the result of executing a view object. A view object
instance may contain multiple query collections, depending on the parameter values
used by the row sets to execute the parameterized query. All the row sets in a view
object are backed up by query collection objects. If two or more row sets use the same
parameter values to execute the query, the framework will share the same query
collection object to store the rows for those row sets.

Application modules

Application module acts as a service layer for the business services built, using
business components. It represents a modular unit of work, and exposes the data
model and business method to be used by the client. As the application module is the
first layer that a client interacts with, the framework takes special care to reduce the
cost associated with the creation and destruction of instances by enabling instance
pooling for application modules. Instance pooling reduces the number of application
module instances, and thereby the resources needed by service client requests. You
can use various configuration parameters to control the pool behavior at runtime.

An application module is composed of the following parts:
* Application module definition XML metadata file: The application module
definition is stored in this XML file

* Application module definition: The application module definition acts as a
Java wrapper for the XML metadata file, which will be used at the runtime to
create application module instances

* Application module: This is an application module instance, which exposes
the data model to be used by a client

[45]

Introduction to ADF Business Components

An application module instance is a work unit container, which aggregates the
following component instances and methods:

* View object instances: These are the instances exposed to the client to use.

* View link instances: View link instances are used to connect view object
instances in an application module. Whenever the currently selected row is
changed on the master view object instance, the detail view object will be
refreshed with new set of rows for the new parent. View link instances are
built by using the view links defined between view object definitions.

* Custom business methods: These are methods exposed by an application
module that implements the business logic that can be used by client.

* Nested application module: An application module can act as a composite
root application module by nesting existing application modules. This
feature is useful for composing services to be used by a client.

Services and service data objects

An application module can be easily extended as web service by using the
design-time support provided by JDeveloper. The application module editor
allows you to expose application modules as web services that use Service Data
Object (SDO) components based on the view instance defined in the application
module. The service-enabled application module exposes the view object
instances, custom business methods, built-in data manipulation operations,

and find methods to be used by the client.

a1

‘Q To learn more about the SDO standards, visit the Open SOA website at

http://www.osoa.org.

Building a simple business service

In this section, we will create a simple ADF model project to get familiarized with the
visual aids and tools for building business logic by using ADF Business Components.

Ry Function key F1 is your friend!

While working with any editor dialog, you can press F1 to learn more
about the features available on the currently active editor window.

[46]

Chapter 2

To build business services using ADF Business Components, perform the
following steps:

1.

Right-click on the application navigator in which you want to create the
model project, and choose New Project to open New Gallery.

Expand the General node, select Projects, and then select ADF
Model Project.

In the ADF Model create wizard, enter the name for the project. Optionally,
you can enter the package name. The wizard will generate the model project
in the application navigator.

To generate business components, right-click on the model project and
choose New.

In New Gallery, expand Business Tier, select ADF Business Components,
and then choose Business Components from Tables.

Business component generation needs a database connection to proceed.
You can either select an existing connection or create a new connection.

The wizard for creating business components from tables will help you to
generate the following;:

° Entity objects based on database objects

° Updatable view objects from entity objects

° Read-only view objects based on database objects

The following screenshot displays the wizard dialog for creating business
components from tables:

~» Create Business Components from Tables - Step 1 of 6

Entity Objects

" Spedfy the package to contain your new entity objects and assodations.

& Entity Objects
I

Package: |cnm.pax:kq:uuh‘adfgulda‘mz.mﬂdel.ennty Browse...
v Entity-based View Objects

Shuttle database schema objects to the Selected list to create entity objects.

Schema: ‘HR " Type Filter: OFF Filter Types

Name Filter: |% ‘ |:| Auto-Query Query

Availables Selected:

Ao

[counTRIES = empLovEES

[EH COUNTRYNAMES

[EH DEPARTMENTS_ALDIT
£2) EMP_DETAILLS_VIEW
[FILE_STORAGE

[1085

[E3 10B_HISTORY

[E4 LocaTions

[oRaDFCsAVPT

K e ¥«

Entity Name: |Departmenif0 |

Help [ext > Einish Cancel

[47]

Introduction to ADF Business Components

8. Select the desired tables and follow the wizard to generate the appropriate
entity objects and view objects.

9. The fourth step in the wizard will optionally generate the application module
by exposing the view objects to be used by clients.

10. If you chose to continue the wizard, the next step will allow you to optionally
generate a business components diagram for the business components that
you generated in preceding steps. It can be used for documenting the
business model.

Each step in the wizard for generating business components from tables
M will allow the developer to alter the default names generated by the IDE.
Q In real-life application, it is suggested to modify the default business
component names and package names, reflecting the naming guidelines
and coding standards set for the application.

The following screenshot displays a simple business service implementation
generated with ADF Business Components based on the DEPARTMENTS and
EMPLOYEES tables from the HR schema. This example logically groups entity objects,
entity associations, view objects, view links, and application modules into separate
packages by manually altering the default packages generated by the wizard. The
default names for the business component definitions and instances have been
modified to improve the readability of the components.

Application Mavigator * =]
ADFDevGLUideChzHRMadel ~|& -
—| Projecks Bl @ VF-E=-

=-{5] HRMadel
=[] &pplication Sources
[l com. packtpub, adfquide
B[l chz
-1 madel
(i) entity
=1l assoc
-5, DeptMorFlassor
L_E, EmpDeptFkassoc
- 57, EmpManagerFkassoc
[J--- DepartmentEC
[J--- EmployesED
SErYiICE
13 HR:ServicedppModule
1 wview
= [link.
'E_'é] DeptigrFkLink.
‘E_'é] EnnpDaptFkLink
"fﬂ EmpManagerFkLink
-2 DepartmentyC
-] Ernplayeei'O
----- %5 HRModel jpx

[48]

Chapter 2

You can set preferences for appending custom suffixes to the default

names generated by the business components wizard. The Preference

Settings dialog box is available under the main menu, Tools |
Preferences | ADF Business Components | Object Naming.

ADF Business Components configuration

files

When you generate business components by using the IDE, the wizard will also
generate metadata configuration XML files to manage the runtime behavior of ADF
Business Components. Let us take a quick tour of these metadata configuration files.
We will be discussing individual configuration entries in the next chapters when we
talk about specific components and their usages in depth. These are the configuration
files under discussion:

beaj.xcfg: The be4aj . xcfg file contains metadata information about the
application module and runtime parameters that have been configured to
manage the runtime behavior of each application module instance. When
you generate an application module, this file will be automatically generated
in common subfolders relative to the folder where you create the application
module definition. If you edit an application module configuration by using
the editor, the modified values are set in the corresponding bc47j . xc£g file.

adf-config.xml: The adf-config.xml file contains application-level
settings for various framework components scattered across different layers
of the application. These configuration entries are usually determined

at deployment time and will be configured in the adf-config.xml file.
However, there are cases where an application administrator may want to
modify certain parameters at runtime without bringing down the entire
application. You can use the Oracle Enterprise Manager (OEM) control to
modify the specific settings for business components at runtime without
bringing down the application.

To learn more about using Oracle Enterprise Manager to
configure ADF web applications, refer to the Oracle Fusion
Middleware Administrator's Guide for Oracle Application

+ Development Framework. To access the documentation go to

% http://www.oracle.com/technetwork/developer-
T~ tools/jdev/documentation/index.html and

navigate to Oracle JDeveloper and ADF Documentation
Library | Administrator's Guide. Use the search option to

find specific topics..

[49]

Introduction to ADF Business Components

<ModelProjectName>. jpx: The <ModelProjectName>. jpx file is used by
both design-time editors and runtime framework components. JDeveloper
uses the <ModelProjectName>. jpx file as a registry to track the contents
of the model packages. It also contains metadata for shared application
modules present in the project, which is used by both design-time and
runtime components.

adfm.xml: The adfm.xml file contains path information for other registry files
used in the model project. You may not see this file in a model project source
during development. IDE generates this file with appropriate entries when
you build a model project. The adfm.xml records path information for the
following files, if they are present in the project:

o

bc4j.xcfg

°® <ModelProjectNames>.jpx

° DataControls.dcx

° DataBindings.cpx

Note that this file is used as a registry of registries in the view controller
(Web Ul) project as well. There, IDE generates this file when you start using
ADF binding features. We will discuss this in detail in Chapter 7, Binding
Business Services with User Interface.

Oracle ADF Model Tester

Smoke testing of the business model implementation is essential for the success
of any application development. The JDeveloper comes with a Graphical User
Interface (GUI) based Model Tester to test your business components.

To test the business components, select the application module in the Application
Navigator window, right-click on it, and choose Run or Debug. JDeveloper will
display the Oracle ADF Model Tester window as shown in the following screenshot:

[50]

Chapter 2

Oracle ADF Model Tester, (HRServiceAppModulel ocal-Local)

Ele Wew Create Database Help

-

",.'; H_RService.ﬂppModuIe ﬁ Departments ‘

=
4---,‘:._'] EmpDeptFkLink
gﬂ EmploveesForDepartment

DepartmentId |30
DepartmentMame | Purchasing
Managerld (114

LocationId (1700

< >
Mame:HR ServicedppModule. Departments Definition:com. packtpub. devguide. adf . chz . model. wiew, Departmenty o

The ADF Model Tester tool will let you test the data model that has been exposed
through an application module. This includes executing view object instances

to query the datasource, traversing master-child view object instances linked
though view links by modifying the attribute values, committing or rolling

back a transaction, and invoking business methods.

A quick walkthrough of the commonly used ADF Model Tester toolbar buttons is
as follows:

Buttons Description

The navigation buttons displayed in the toolbar will help you to
navigate between the rows in the collection.

& X The green plus toolbar button will create and insert a new row and the
red delete button will remove the current row.

The transaction commit button will save changes to the database. The
transaction rollback button will discard the changes since the last save
or last query.

The validate button will run all the validations defined on the entities
participating in the current transactions.

The bind variable edit button will enable you to alter the bind variable
value and re-execute the view object.

&o

The view criteria button will allow you to filter the rows by using
query-by-example criteria available on the view object.

[51]

Introduction to ADF Business Components

In a nutshell, this window can be used to test the basic Create, Read, Update, and
Delete (CRUD) operations on business data.

Using the ADF Model Tester to test the
CRUD operations on business data

In the ADF Model Tester window, select the view object instance in the data model
tree on the left and execute the same by double-clicking on it. Alternatively you can
right-click on the view instance and select the Show option to execute a specific view
object instance. The result will be displayed on the data view page on the right-hand
side. You can navigate between rows by using the navigation buttons displayed in
the toolbar. If you modify the attribute values, that transaction can be saved by using
the transaction commit button.

To test master-detail co-ordination between view objects, double-click on the view
link instance displayed between the master and child view object instances in the
data model tree.

Testing business methods

There are two instances —application module and view object— through which
business methods are exposed in the ADF Business Components architecture.

To learn about exposing custom methods through the application module
or view object, refer to the section Exposing business service method through
’ data control in Chapter 6, Introducing the Application Module.

To test the methods exposed through an application module instance, double-click
on the application module name displayed at the root of the data model in the
Oracle ADF Model Tester window. This action will display a drop-down list

on the data view page with all the exposed methods from the selected application
module. You can pick up the desired method and click on Execute to test the
method. The following screenshot illustrates this feature. This example invokes upd
ateDepartmentName (departmentId, departmentName) defined on the application
module with user supplied values.

[52]

Chapter 2

| £ Oracle ADF Model Tester (HRServiceAppModulelocal-Local)
File View Create Database Help

erviceAppMod
= -?._l Departments

&3 HRServiceAppModule
HRServiceAppModule

Method updateDepartmentMame

Property Value
departmentId[iava.lang.Integer] \ 10

departmentMame [java.lang.String] \Adminish’aﬁon

Result success

Return value MNULL

MName:HR ServiceAppModule Definition:com. packtpub. adfguide.ch2.model.service HRService AppModule

To test the methods exposed through the view object, right-click on the view object
instance in the data model tree in the Model Tester window to display the context
menu and select the operations menu item. The rest of the steps are the same as

testing an application module method that we discussed at the beginning of

this section.

This section is intended to briefly introduce you to the Model Tester.
To learn more about using the Oracle ADF Model Tester, refer to the
. chapter Testing View Instance Queries in Fusion Developer's Guide for
% Oracle Application Development Framework. To access the documentation
L visit http://www.oracle.com/technetwork/developer-
tools/jdev/documentation/index.html and navigate to Oracle
JDeveloper and ADF Documentation Library | Fusion Developer's
Guide. Use the search option to find specific topics..

Java test client for ADF Business

Components

You can generate a Java test client to test the application module and associated data
model. The step for generating a Java client is simple and straightforward.

[53]

Introduction to ADF Business Components

To generate a Java test client class, perform the following steps:

1. Right-click on the project and select New.

2. Inthe New Gallery window, select Java under the General category node
and then select Class on the right side of the panel. Enter the package and
class name.

3. Inthe generated Java class source, keep the cursor inside the body of the main
(string[] args) method, type the characters bc4jclient, and press Ctrl +
Enter. This will generate a basic skeleton to invoke the application module.

4. Modify the amDef and config variables to reflect the names of the
application module definition and the configuration that you want to test.

The following code snippet shows a simple test client program to test an
application module:

Downloading the example code

purchased from your account at http: //www. PacktPub. com. If you
purchased this book elsewhere, you can visit http: //www.PacktPub.
com/support and register to have the files e-mailed directly to you.

.Q You can download the example code files for all Packt books you have

import oracle.jbo.ApplicationModule;
import oracle.jbo.Row;

import oracle.jbo.ViewObject;

import oracle.jbo.client.Configuration;

public class TestClient {

public static void main(String[] args) {
String amDef =
"com.packtpub.adfguide.ch2.model.service.HRServiceAppModule";

String config = "HRServiceAppModulelLocal';
ApplicationModule am =
Configuration.createRootApplicationModule (amDef, config);

// Work with your appmodule and view object here
//Find Department View Object Instance
ViewObject vo = am.findViewObject ("Departments") ;
//Execute Department query

vo.executeQuery () ;

//Fetch the first record

Row deptRow = vo.first();

printRow (vo, deptRow) ;

// Clean up resources
Configuration.releaseRootApplicationModule (am, true) ;

[54]

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support

Chapter 2

Understanding the runtime behavior of
ADF Business Components

In the previous section, we discussed building a simple ADF model project and
learned how to test the business components by using the built-in Model Tester as
well as by using the code. You might be wondering now, how do all these things
work even without writing down a single line of code? It's time for us to explore the
real heroes who do the real jobs behind the scenes.

If you use ADF Business Components for building business logic, you do not really
need to worry about the low-level coding, which is otherwise required for querying
the database and populating the collection to be used by the client, tracking the
modified item, and posting the updates back to the database. In this section, we will
learn about the roles and responsibilities of each business component. We will see
how they collaborate and work together at runtime to query the datasource and to
manage the user transactions.

Roles and responsibilities of the view object,
row set, and query collection

Before we dive into the business components' interactions at runtime, let us take a
step back and analyze the roles of each business component. The following diagram
depicts the core business components, which are responsible for querying the
database table and caching the result set to be used by the client:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Entity Object Caches

Entity Object Eﬂ |

**

Query Collection Cache

View Object
{é} Query Collection
-Query
- Attribute Definitions <:> L J
Row ;u»

|

Row Set

- Bind Variables
-Row Set Iterator

Introduction to ADF Business Components

A view object contains a query to read records from the database. It also contains
attribute definitions for each column present in the SELECT clause. The framework
may use the same view object in multiple places to query the datasource with a
different set of bind variable (also known as bind parameter) values. For managing
the bind variable values used in a query and resulting rows, the framework uses
another class known as row set. As you might have guessed already, a view object
may have many row sets. All row sets that belong to a view object use the same
query statement supplied by the view object, but with a different set of bind variable
values supplied by the caller. As we discussed a while ago, a view object internally
uses a default row set to manage the collection from the query. By default, when a
client executes a view object multiple times, the framework populates the default
row set each time. A client can explicitly create secondary row sets on a view object,
if needed. A row set uses a default row set iterator object to track the current row
and iterate over the collection of view rows from the query execution.

The real work horse behind a row set is query collection, which is maintained at
view object instance level. The actual query execution and caching of rows is done
by a query collection class. Each row in a row set acts as a wrapper over rows from
the query collection. If the view object is based on entity objects, the framework
generates entity object instances to back up the rows in the query collection. This
concept is illustrated in the preceding diagram.

A closer look at query collection

A view object may contain multiple row sets and among these, some row sets might
have used the same parameter values for executing the query. While it is necessary
to keep the logic for navigation cases and pagination specific to each client, there

is no need to replicate the same collection across row sets, if they have queried the
database with the same parameter values. So, the framework uses query collection
instances to cache the rows from query execution serving multiple row sets with the
same bind variable values.

Let us take an example to understand the role of query collection, row sets, and view
objects when a client queries the datasource.

In this example, we are taking Product and Supplier view objects. One product can
have multiple suppliers in a city and these view objects are linked through a view
link. The view link uses the attribute City to connect source and destination view
objects. Suppose product 10 and 20 are delivered in New York and product 30 in
New Delhi. New York has two supplying agencies Nexus and Shopster, and New
Delhi has Simply Shop.

[56]

Chapter 2

Suppose you want to display Product and Supplier in a tree structure, with Products
as parent nodes and Suppliers as child nodes. ADF uses Product and Supplier view
objects linked through view links to populate the tree hierarchy. Now, when you
query the products view object, the framework populates the default row set in the
products view object with products 10, 20, and 30. When the application invokes

the view link accessor to get the suppliers from product, each product row will
produce a view row set in the Supplier view object. As all collections need to co-exist
at this stage, the framework does not touch the default row set, it rather generates a
secondary row set in the supplier view object to hold the collection for each caller.
Products 10 and 20 show supplying agencies in New York, and product 30 shows the
supplying agencies in New Delhi.

As the first two view row sets show the same data, the framework will re-use the
same query collection for city='New York', and the third will have its own query
collection for city='New Delhi' as illustrated in the following diagram:

Master-Detail View Object Linked
through View Link

Query Collections

glf;tg;t [Ipod Speakers | [New York |) \

City-'New York’

Detail
Row Set

[100] [News | |

[200] [Shopster] ‘ |§

|LED TeIevision| | New York |

Detail
Row Set

v

| 100| | Nexus |

| 200 | | Shopster|

City-'New Delhi’

a—

|Ipod Speakers| | New Delhi |
|

\4

[57]

Introduction to ADF Business Components

To summarize, when a view object or row set instance is queried for collection, the
view object checks an internal query collection hash table to see if a query collection
for the row filter key is already in the list, and if found, re-uses it. Otherwise, the
query is executed and a new query collection is generated.

What happens when you execute an
entity-based view object?

We are prepared for a deep dive now. In this section, we will examine how ADF
Business Components work together and complement each other to read data

from a datasource. As we discussed at the beginning of this chapter, the business
component that is primarily responsible for querying the database table is the view
object. However, there are more active items under the hood helping the view object
execute the query.

Let us take a simple example to illustrate how a view object queries the datasource
and populates the row set. The following code snippet will help you to query the
DEPARTMENTS table through the Departments view object. The code snippet contains
an implementation to find and execute the view object instance. The last line in the
example fetches the first element in the result set:

ViewObject vo = applicationModule.findViewObject ("Departments") ;
vo.execute () ;//execute view object to fetch rows
Row row=vo.first();//Move to the first row in the row set

The following sequence diagram highlights how the business components interact
with one another to query the database:

’ Client

’ Application Module‘ ’ View Object ‘ ’ Row Set ‘ ’ Query Collection

’ Database ‘

3 1: find ViewObject 3
2: ViewObject

3: executeQuery 3 4: getDefaultRowSet

5: executeQuery

7: prepareRowSetFor Query

v

> 6: initQueryCollection

= executeQueryForCollectio

9: executeQuery

_ 110: SELECT Query

12: setResultSetForCollection

<

[58]

Chapter 2

An ADF Business Component client starts the interaction by procuring an
application module instance and looking up the view object in the application
module. The application module instantiates the view object by using the view
object definition and returns the view object instance to the client.

The client then executes executeQuery () on the view object instance to initiate
the data fetch operation. The view object instance does not directly query the
database, rather it acts as the primary contact point for client. The view object finds
the default row set and delegates the call. The row set, as the name suggests, is
responsible for managing the row collection for the client. When any view object
calls executeQuery () on arow set, it does the following tasks:

* Row set will check the associated view object instance to see if a query
collection for the search parameters (row filter) is already available.
If yes, use the same query collection object.

* If it does not exist, then a new query collection will be created and this will
be added to the view object.

Once the query collection is initialized, the row set will engage the standard

query execution lifecycle methods from the view object. The row set instance calls
prepareRowSetForQuery () on the view object first. This callback method is the
place to hook your custom code (if any) right before the query execution. This is
followed by a call to executeQueryForCollection () on the view object. The view
object delegates the call to the query collection instance, which is the real hero in the
rest of the story. The query collection executes the query by using Java Database
Connectivity (JDBC) APIs and gets the result set back. This result set will be

glued in the query collection instance.

If you want to intercept the query execution lifecycle for a view object,
% you may need to generate a view object class and override the standard
’ methods from the oracle.jbo.server.ViewObjectImpl base class.

When the client tries to get the first row in the result set by calling first () on the
view object instance, the call will reach the default row set instance in the view
object. The row set will now initialize the default row set iterator object, which

is responsible for iteration over the view row collection. As the row set is not yet
populated with rows, call for the first element by the iterator will put the associated
query collection instance into action. The query collection will start serving the call
by checking whether the result set from the query has any rows to work on, and if
this check returns true, it starts generating a view row for the first item in the result
set. While creating the row, if the view object definition is based on an entity object,
entity instances will be created and added to corresponding entity cache.

[59]

Introduction to ADF Business Components

The next step is to populate the newly created entity instances with values from the
row in the result set. If there is an entity backup, each row in the query collection
will simply act as pointers to corresponding entity instances, and actual data will
be present in the entity cache. Once the row is created and storage for the row is set
pointing to the entity object, it will be added to the query collection's internal list. If
the view object is not built using entity objects, obviously the entity cache would be
missing and each row in query collection will be holding the data.

Viewing the object row cache and entity cache

M Query result is cached in query collection instance, which is known as
Q view object row cache. If the view object is based on an entity object,
each view row in the query collection will act as a pointer to the entity
usage instance, which is present in the entity cache.

What happens when you commit a
transaction?

Let us examine what happens when you modify rows in a view object backed up by
entity objects, and later commit the transaction.

This discussion uses the following code snippet to illustrate the transaction

post cycle for business components. The code snippet used in this example
fetches a row from the DEPARTMENTS table by using the Departments view object,
and modifies DepartmentName in the row. The commit () call on the transaction
makes changes to the database.

ViewObject vo = applicationModule.findViewObject ("Departments") ;
vo.executeQuery () ;
Row deptRow = vo.first();

//Modify the attribute DepartmentName for first row
deptRow.setAttribute ("DepartmentName", "HR Service");

//Commit the transaction
applicationModule.getTransaction() .commit () ;

When you modify the attribute value by calling setAttribute () on arow, the call
reaches the underlying entity instance on which the row is based. At this stage, the
following actions happen:

* The framework pushes the modified attribute value to the entity instance.

¢ Then, marks it as modified.

[60]

Chapter 2

Runtime adds the modified entity instance to the transaction listener list and to the
validation listener list, maintained by the DBTransaction object attached to the
owning application module. Later, when you commit changes by calling commit ()
on a transaction, the following steps are triggered behind the scenes:

* The DBTransaction object triggers the validate phase. All the modified
entities that are available in the validation listener list are validated.

* Transaction manager starts the data post cycle. All the newly created,
deleted, and modified entities that were added into the transaction post
listener list will be participating in this cycle. During the post changes cycle,
the framework performs the following tasks:

° Locks each modified entity

° Generates native SQL for data manipulation based on the type of
operation and modified attributes

Executes JDBC statements, which post modified data to the database

* The last step is committing the transaction. Runtime makes pre- and
post-callbacks to enable all the parties participating in the transaction
to perform any actions before and after the transaction commits.

. . Entity
‘Chent ‘ ‘ DBTrasaction ‘ ApplicationModule Object
1 1 1
1 1

Commit

‘
[¢ validate peforevalidate _ !

‘
t [loop [for eadh|validation listener] validate 1 ‘

[>,

>
>

i after Validate
i loop [for eagh transaction post Iistener])

;_| postChanges
|

A4

postChanges lock

pre[areForDML
doDML

! [loop [for eachlt ion li),

[¢ doBeforeCommit

beforeCommit
beforeCommit
doCommit

v

doAfterCommit

afterCommit

afterCommit

[61]

Introduction to ADF Business Components

As this is an introductory section, we are keeping things simple. We will cover life
cycle methods of business components in depth in the next chapters.

Summary

In this chapter, we discussed the core building blocks of ADF Business
Components and how they collaborate and work together at runtime to
perform basic CRUD operations on rows from a datasource. In this chapter,
you have learned the following;:

* Role of business service layer in an enterprise application

* Building blocks of ADF Business Components

* Using JDeveloper to build ADF business components

* How the view object reads data from database

* How the entity object participates in the transaction post cycle
This chapter is intended to give you an overview of business components. We will
take a closer look at each business component item in the coming chapters. The next
chapter discusses the entity object and its basic features. More advanced features

of entity objects are covered in Chapter 5, Advanced Concepts on Entity Objects and
View Objects.

[62]

Introducing Entity Object

The previous chapter introduced the fundamentals of ADF Business Components.
Now, it is time for us to explore the Oracle ADF technology stack in depth. This
chapter builds on the introduction by outlining the entity objects, which make up
the persistence layer of business components. The remaining components in the
business service layer such as view objects and application modules will be
covered in the next chapters. In this chapter, we will discuss the following topics:

* Concepts and architecture

* Core features of ADF entity objects

* Developing entity objects

e Commonly used properties of an entity attribute
* Commonly used properties on an entity object

* Working with entity objects

Introduction

The ADF entity object hides the physical database objects from the developers,

and enables them to work with data in the form of Java objects and properties — for
example, departments and employees. If you take business logic built by using

ADF Business Components, an entity object represents data source definition (for
example, a database table) and an entity instance represents a row in the datasource.
In this chapter, you will learn using entity objects to build a data model for your
business application. This chapter mainly focuses on declarative features offered by
the ADF entity object. More advanced features will be explained in Chapter 5,
Advanced Concepts on Entity Objects and View Objects.

Introducing Entity Object

An entity object shields the developer fr

or even third-party services.

A full list of supported databases for the Oracle ADF runtime components
+ and JDeveloper IDE is available at the Oracle technology network
% website (http://www.oracle.com/technetwork/developer-
tools/jdev/documentation/index.html) under the Certification

Information category.

om the complexities of the underlying
datasource, using the concept of object relational mapping. The datasource for
a typical ADF application could be traditional relational database management
systems, such as Oracle, MySQL, MS SQL Server, and DB2, or web services,

Ingredients of an entity object

In Chapter 2, Introduction to ADF Business Components we discussed the constituents
of an entity object. In this section, we are revisiting the same topic to analyze the

artifacts of an entity object in depth:

Entity Definition

Association ‘\l

Entity Object

Entity Collection(Entity Cache)

@ |
Entity Object E
|

An entity object is composed of the following components:

* Entity object definition XML m,

etadata file: This file is an entity descriptor,
which holds metadata definition for the entity. This file stores the following

configurations for an entity object:

° This file stores the datab

or materialized view.

ase object on which the entity is built upon.
An entity object can be built from a database table, view, synonyms,

[64]

Chapter 3

° This file also stores the attribute definition for each column present
in the entity object. This includes the datatype, length, precision,
validation rules, and updatability of the attribute. Attribute
definition also includes UT hints such as label, tool tip, format
type, and control type.

° View accessors and entity accessor attributes' definitions are also
stored in this file. View accessors and entity accessor attributes'
definitions are used for accessing view objects and associated
entity objects, respectively.

° Business event definitions that are used for launching business
processes in a service oriented environment.

Entity definition: This class acts as a runtime Java class representation for
the entity object definition XML metadata file. The default entity definition
class used by the ADF Business Components' runtime is oracle. jbo.
server.EntityDefImpl, which can be extended to provide custom
functionalities, if needed.

Entity object: This class represents individual entity instance created from
the entity definition at runtime. The default entity object class used by the
ADF business components' runtime is oracle.jbo.server.EntityImpl,
which can be extended to provide custom functionalities, if needed. In
simple words, an entity object instance represents a row in the datasource.
For example, when you query an Employee table in the database by using a
view object backed up by the EmployeeEO0 entity object, the framework
creates EmployeeEO entity object instances for storing employee records
returned by the SQL query.

Entity collection: This class represents the cache of the entity object class held
in memory for a transaction. The default entity collection (entity cache) class
used by the ADF Business Components' runtime is oracle.jbo.server.
EntityCache, which can be extended to provide custom functionalities,

if needed.

Runtime collaboration between business
components

At runtime, when an entity instance is created, the framework uses corresponding
entity definition class for defining the entity structure. All entity instances inherit the
properties from its entity definition class. When the primary key is set for a newly
created entity instance, it qualifies for being stored in the entity collection (entity
cache). The framework will access the entity instance from the cache thereafter.

[65]

Introducing Entity Object

Core features of ADF entity objects

Oracle ADF entity objects are not just yet another data access layer built by using an
object relational mapping mechanism, rather they are an end-to-end ORM tool with
many out-of-the-box features:

* Visual and declarative development

* Associations

* Declarative validation

* Entity inheritance

* Entity caching

* Built-in CRUD operations

* Concurrency handling

* Customizable framework components

* Domain-driven development

* Security-enabled business components

Developing entity objects
In this section, we will learn more about building and configuring entity objects by
using JDeveloper IDE.

Creating a database connection

While discussing the ADF Business Component in the previous chapters, you have
been introduced to the database connection wizard. We are not repeating the same
steps here, rather adding a point on top of what we have learned already:

* The database connection can be defined either at IDE level, which can
be copied to multiple ADF model projects to be used, or can be defined
individually for each ADF model project in its Application Resources
section.

* To create a connection at IDE level, navigate to View | Database | Database
Navigator from the main menu. Right-click on IDE Connection and
select New Connection. The remaining steps remain the same as for
defining an application-level database connection.

[66]

Chapter 3

Initializing the ADF model project

When you opt for generating business components in a model project for the first
time, you will see the Initialize Business Components dialog box. This dialog box
has options to set the SQL platform and datatype map to be used by the model
project. The SQL platform decides the native SQL generation by the business
components' runtime. The datatype map list decides the Java datatypes to be set
for the attributes in the business components. The default datatype map used by
JDeveloper for Oracle database is Java Extended For Oracle.

If your application needs to be ported to different databases at a later
stage, make sure that you are setting the SQL platform as SQL92
+ and the datatype map as Java. For more information on this topic,
please refer to the white paper How to Develop with ADF Business
’ Components for Multiple Databases, which is available online at http: //
www.oracle.com/technetwork/developer-tools/jdev/
multidatabaseapp-085183.html.

Creating entity objects

JDeveloper helps you to build entity objects in two ways:

* Using Create Business Components from the Tables option: This option
allows you to create multiple entity objects in one go.

To use this option, right-click on the model project and select New. In New
Gallery, expand Business Tier, select ADF Business Components, and then
select Business Components from Tables.

* Using the Create Entity Object wizard: This option allows you to create a
single entity object at a time.

To use this option, right-click on the model project and select New. In New
Gallery, expand Business Tier, select ADF Business Components, and then
select Entity Object.

In this section, we are not going to repeat the same discussion on entity generation
that we had in the previous chapters, rather our focus will be on some steps that we
skipped by accepting the default settings while using the wizard. You can refer back
to the following sections for a quick brush up:

* Building a simple business service in Chapter 2, Introduction to ADF Business
Components

* Generating the data model and business services in Chapter 1, Getting Started with
Oracle ADF

[67]

Introducing Entity Object

Choosing the database object type

To keep the discussion simple, this section assumes that you are using the Create
Entity Object wizard for generating an entity object. However, the features that we
will discuss here remain the same even if you use Create Business Components
from the Tables option.

The first screen in the Create Entity Object wizard will allow you to pick up the
schema objects on which the entity objects are based. JDeveloper provides options
to build entity objects from the following database object types:

* Tables: This option will allow you to define entity object(s) for database
tables. This is straight forward and does not need much explanation.

* Views: A database view takes the output of a query and makes it appear
like a virtual table to the user. If you want to build entity objects by using
the database view to insert, update, or delete table rows, the view should be
updatable. Database views can be either inherently updatable, or you can
create an INSTEAD OF trigger on the view to make it updatable.

Here is an example for a simple updatable database view defined on the
EMPLOYEES and DEPARTMENT tables:

CREATE OR REPLACE VIEW EmployeeDepartmentView AS SELECT Emp.
EMPLOYEE ID, Emp.FIRST NAME, Dept.DEPARTMENT NAMEFROM EMPLOYEES
Emp, DEPARTMENTS Dept WHERE Emp.DEPARTMENT ID = Dept.DEPARTMENT
ID;

Note that you can also make a database view-based entity object
updatable by overriding the doDML () method of the entity
implementation class. This method can contain logic for invoking
% custom stored procedures for the insert, update, and delete operations
= as appropriate. We will discuss this topic in the section entitled Building
programmatically managed entity objects in Chapter 5, Advanced Concepts on
Entity Objects and View Objects.

* Synonyms: A synonym is an alias for any table, view, or materialized view.
This option will allow you to define entity object(s) based on synonyms
that the schema defines. Here is an example for a synonym defined on the
EMPLOYEES table:

CREATE OR REPLACE SYNONYM EMP for EMPLOYEES;

[68]

Chapter 3

* Materialized view: A materialized view is a database object that contains the
results of a query. Here is an example for a materialistic view:

CREATE MATERIALIZED VIEW EmployeeMView FOR UPDATE AS SELECT *
FROM EMPLOYEES Employees WHERE Employees.DEPARTMENT ID = 10;

To learn more about Oracle database objects such as database

view, materialized view, and synonym, refer to the Oracle Database
SQL Language Reference documentation available at http: //www.
oracle.com/technetwork/database/enterprise-edition/
documentation/index.html.

%&‘ When you generate entities from a view, materialized view, or synonym,
the framework may not be able to infer the primary key from the data
dictionary. So you as a developer are responsible for specifying the
primary key attribute. The primary key is used by the framework to
uniquely identify entity rows at runtime. If there is no explicit key set,
the framework will set the default primary key to RowID.

Generating Java classes for entity
components

ADF provides a visual and declarative way to build your business logic. When you
build entity objects by using JDeveloper, the wizard generates entity XML files to
store the metadata properties derived from the database object. These configurations
will be used by ADF Business Component framework classes to implement the
generic CRUD operations on datasource.

The default base classes from the ADF framework may be enough for building most
of the generic use cases. However, if you want to go beyond the declarative features
to implement custom business logic for your entities, you will need to generate Java
classes and override the entity call back methods to add your custom code.

[69]

http://www.oracle.com/technetwork/database/enterprise-edition/documentation/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/documentation/index.html

Introducing Entity Object

To generate Java classes for entity, double-click on the entity object to display the
overview editor. In the overview editor, go to the Java tab and click on the Edit
icon. In the Select Java Options dialog, select the types of Java classes that you
want to generate:

Entity object class: This class is the more frequently sub-classed class and

is used for customizing business logic or runtime behavior for an entity
instance. For example, if you want to prevent an update on specific attributes
conditionally, you will have to generate an entity object class and override
the setAttributeInternal () method to add your logic. To learn more
about the entity object life cycle methods, refer to the section entitled Life
cycle callback methods of an entity object in Chapter 5, Advanced Concepts on
Entity Objects and View Objects.

Entity collection class: This class is for customizing the default entity
caching implementation. For example, you may customize the default
caching implementation if you want to provide your own caching logic,
or to provide custom logic for cleaning up the cached rows.

Entity definition class: This class is used for customizing the default entity
definition implementation, and manages entity row creations and defines
their structure. For example, if you want to modify the properties of an
entity object or attributes of an entity object at runtime, you can override the
resolveDefObject () method in the oracle.jbo.server.EntityDefImpl
class, and add custom logic for altering the definition before returning to
the caller.

Generally you may not customize an entity collection class and
@’@‘\ an entity definition class, as the default implementations are good
g enough to meet most of the use cases.

Commonly used properties of an entity
attribute

An entity object attribute has a set of configurable properties, which can be set
declaratively to override the default settings.

These properties are configurable either when you create an entity by using the
Create Entity Object wizard, or later when creating it by using the entity object
overview editor. The following screenshot displays the entity object overview
editor for the DepartmentEO entity object:

[70]

Chapter 3

[zl DepartmentEQxml * 3]
@

General

Attributes Attributes Set Source Order

Business Rules Entity attributes can be based upen columns in the schema object or can be based upon transient values.

Java

Mame @

Business Events el + X

View Accessors Mame Type Column Name Column Type Extends -
o= Deparmenti fteoer ———peraeNT D nees, I
Departmentilame String DEPARTMENT_NAME VARCHAR2(30)

A
Detail UIHints = Valdation Rules = Security Dependencies = Custom Properties

Mame : |Department{d | Updatable: |A|way5 -]
Display Name: |Depariment d | (3) Persistent () Transient

Description: | | Mandatory || Refresh on Insert

Type : |Inbeger '| / [[] Refresh on Update

Property Set: |mm.packmub.adfguide.mS.mcdeI.Dmp... '| Queryable [7] change Indicator

Default Value

() Literal () Expression () SQL

| |7

Column Name: |DEPARTMENT_ID |

Column Type: [NUMBER (4,0) |

[] Polymorphic Discriminator
[] Generate Unique Constraint

Effective Date

[] Sequence Flag [] Sequence

Overview | Diagram Source History ['_

You can open up the overview editor by double-clicking on the appropriate entity
object in the model project. Let us take a look at the various properties displayed in
this editor.

Attribute names in an entity object

When you generate entities, J]Developer will use the camel-capped attribute naming
convention by default. For example, if you have a column, such as DEPARTMENT_NAME
in a table, JDeveloper will pick up the parts separated by the underscore character
and will uppercase the first letter in each part. The column DEPARTMENT NAME turns
into DepartmentName in the entity. If you manually edit the names, the attribute
name should follow the Java variable naming convention. Also, make sure you use
logically meaningful names to improve the readability of the code. If you opt to
generate an entity object class with accessors (getter methods for attributes) for
your entity object, the framework will generate the accessor methods in the entity
object class as follows:

/**

* Gets the attribute value for DepartmentName

[71]

Introducing Entity Object

* @return the value of DepartmentName

*/

public String getDepartmentName () {
return (String)getAttributeInternal (DEPARTMENTNAME) ;

}
/**

* Sets value as the attribute value for DepartmentName.

* @param value value to set the DepartmentName

*/

public void setDepartmentName (String value)
setAttributeInternal (DEPARTMENTNAME, value) ;

}

Attribute types in an entity object

While generating business components from the database objects, the JDeveloper
IDE will read the data dictionary for the database object and will try to map the
database column with the compatible Java types for the attributes in the generated
business components. The datatypes for the attributes in an entity are decided by the
datatype map set for the model project.

The default datatype map used by JDeveloper for the Oracle database is Java
Extended For Oracle (OracleApps). The following table displays the optimal
datatype mapping for business components, when used with the Oracle database
and OracleApps-type map:

Database column type

Business components attribute type

Description

VARCHAR2

NUMBER

NUMBER

NUMBER

java.lang.String

java.math.BigDecimal

java.lang.Integer

java.lang.Long

VARCHAR?2 is mapped to
java.lang.String

NUMBER type is mapped
to java.math.
BigDecimal if the scale
is not zero or precision is
greater than 18

NUMBER type is mapped
to java.math.
BigDecimal if the scale
is zero and precision is
between 1 to 9

NUMBER type is mapped
to java.lang.Long
if the scale is zero and
precision is between 10
to 18

[72]

Chapter 3

Database column type Business components attribute type = Description

DATE java.sqgl.Date DATE type is mapped to
java.sqgl.Date if the
table column has no time
component and client
does not need time zone
information

DATE java.sqgl.Timestamp DATE type is mapped to
java.sgl.Timestamp
if the table column has
time component and
client needs time zone
information

TIMESTAMP java.sqgl.Timestamp TIMESTAMP type in
database is having
nanosecond precision

BLOB oracle.jbo.domain.BlobDomain BlobDomain supports
streaming and lazy data
loading

CLOB oracle.jbo.domain.ClobDomain ClobDomain supports
streaming and lazy data
loading

Using a resource bundle to localize Ul hint
properties

When you define translatable strings for UI hint properties or validation messages,
by default JDeveloper will create a new bundle if there is no resource bundle in the
project to hold the translatable text.

Accessing the resource bundle from the entity object class

To access the resource bundle defined for the entity object from the entity object
implementation class, refer to the following example:

//Access the ResourceBundleDef defined for the entity object
ResourceBundleDef resourceDef = this.getResourceBundleDef () ;

//Get the user locale

Locale locale = this.getDBTransaction() .getSession () .getLocale() ;
//Get the localized value for the key

String retVal = StringManager.getLocalizedStringFromResourceDef (resour
ceDef, key, null, locale, null, false);

[73]

Introducing Entity Object

To access the resource bundle, which is not directly associated with entity object
definition, you can use standard java.util.ResourceBundle APIs. An example
is as follows:

//Get the user locale

Locale currentlLocale = this.getDBTransaction() .getSession() .
getLocale() ;

ResourceBundle myResources = ResourceBundle.getBundle ("MyResources",
currentLocale) ;

Property set

There are a number of predefined properties for an attribute in an entity object.
Sometimes you may wish to add custom properties for the attributes to store other
information and create custom behavior at runtime. ADF offers property set for
defining re-usable custom properties. The property set is a registry for properties
that can be used to logically group the common properties used in business
components. These properties are broadly classified into two categories:

* Translatable messages such as attribute labels, short description, and other
UI control hints.

As these values changes with locale setting, they are stored in locale
specific properties file, which follows normal resource bundles rules
from Java language.

* No translatable key value properties used in the business logic
implementation.

Property set allows you to re-use the custom properties across business components.

Creating a property set
To create a property set, do the following:
1. Right-click on the model project and select New.

2. In New Gallery, expand Business Tier, select ADF Business Components,
and then select Property Set.

3. Inthe Create window, enter the property set name and package name.
A property set can optionally extend an existing one as well.

Once the property set is created, you can access the translatable and non-translatable
properties by using the green plus icon displayed for the Custom Properties tab.

[74]

Chapter 3

Associating the property set with the entity object
attributes

To use properties from the property set in an entity object attribute, perform the
following steps:

1. Double-click on the desired entity object to open up the overview editor.

2. Click on the Attribute tab in the overview editor and select the
desired attribute.

3. Under the Details tab, select a property set from the drop-down list. This
action will associate the property set with the entity attribute, and later you
can use the properties in the property set to implement custom behavior for
business components.

Using custom properties in business logic

The following example illustrates how you can use custom properties associated
with an entity attribute in the business logic. This example uses custom property
associated with an attribute to customize the execution at runtime. The setEmail ()
method reads the custom UPDATE_CHECK_ENFORCED property associated with the
attribute and based on this value, it calls isEmailUpdatable () before allowing the
data change on the email field. You can use a similar idea in your application to skip
unwanted execution.

public class EmployeeEOImpl extends EntityImpl {

/**

* Sets value as the attribute value for Email.
* @param value value to set the Email
*

/

public void setEmail (String value) {

boolean updateAllowed = true;

//Read the UPDATE CHECK ENFORCED property

//for the Email field

String emailUpdateCheckEnforced =

(String) getDefinitionObject ()
.getAttributeDef (EMAIL) .getProperty ("UPDATE CHECK ENFORCED") ;
//If the UPDATE CHECK ENFORCED is added to

//the attribute, then call

//custom isEmailUpdatable() to check if update is allowed.
//Call to isEmailUpdatable() may be expensive and

//we are doing it selectively using custom property.

if (("true".equals (emailUpdateCheckEnforced))) ({

updateAllowed = isEmailUpdatable() ;
}

if (updateAllowed)

[75]

Introducing Entity Object

setAttributeInternal (EMAIL, value) ;
!

//Remaining EntityImpl code goes here...

}

Persistent and transient attributes

Attributes that are not persisted in the underlying database source, such as the
database table, are transient. A transient attribute's display values are derived from
other attributes either by using Groovy expression or through Java code. In some
cases, transient variables can be used as temporary value holders as well as in the
business logic implementation.

To define a new transient attribute, open the entity in the overview editor. Go to
the Attributes navigation tab. Click on the green plus icon and specify the attribute
name. To mark this attribute as transient, you can either select the Transient radio
button in the Details tab or set Persistent as false in the property inspector. The
value for the transient attribute can be set either as declarative by using the default
value options in the property inspector, or by overriding the appropriate getter
method for the attribute in the entity implementation class.

. As the transient key forces re-evaluation of the value for each access, you
should be careful if marking it as the primary key. The situation becomes
= much worse if the recalculation is expensive and use case demands
frequent access to the attribute value.

Specifying a default value for an entity attribute

As the name suggests, a default value is set to the attribute values:

* The default value defaults the persistent attribute values when you create a
new entity instance

e For transient attributes the default value is used when client accesses the
attribute as well as during entity instance creation

To specify a default value for an attribute, select the Attributes tab in the overview
editor of the desired entity object. Choose the appropriate attribute and then open
the Details tab. Specify the default value by choosing the appropriate options
displayed in the Default Value section.

[76]

Chapter 3

There are three ways to specify default values for an attribute:

e Literal: It is set to default static value.

* Expression: It is set to default values by using the Groovy expression. The
following is an expression that is used for defaulting the primary key from
a database sequence, namely EMPLOYEES_SEQ:

(new oracle.jbo.server.SequenceImpl ("EMPLOYEES SEQ",
adf.object.getDBTransaction())) .getSequenceNumber ()

* SQL: The default value is set by using SQL derived expression.

The following screenshot illustrates the declarative support for specifying a default
value for an attribute. This example specifies a default value for the EmployeeId
attribute, using a database sequence. This will be used at runtime to default the
value for the EmployeeId attribute when a new entity instance is created.

Empllweeﬂ).xrd x | E]
@
General
Attributes Attributes Set Source Order
Business Rules Entity attributes can be based upon columns in the schema ohject or can be based upon transient values.
Java
Mame @
Business Events - EF x
View Accessars MName Type Column Name Column Type Extends -
I R S R I
Firsthame String FIRST_MAME VARCHAR2(20) .
)

Details UIHints = Valdation Rules Security Dependencies — Custom Properties

Mame : |Emp|0yeeld | Updatable: |Always -
Display Name: |Emp|0yee 1d | (%) Persistent () Transient

Description: | | [] Mandatory [] Refresh on Insert

Type : |Inheger '| / [] Refresh on Update

Property Set: |<None> v| Queryable [] Change Indicator

Default Value

() Literal (%) Expression () SQL

{new oracle_jbo.server. Segquencel
mpl ("EMPLOYEES SEQ", adf _cbject.g
etDBTransactioni))) .getSeguenceN
umber () Column Type: |INTEGER |

Column Name: [EMPLOYEE_ID |

Polymorphic Discriminator
|:| Generate Unigque Constraint

| Overview | Diagram Source

[77]

Introducing Entity Object

Effective dated entity objects

Effective dated entities are used to provide a view into the dataset pertaining to a
specific point in time. For example, consider the job history table for an employee in
an organization. This table keeps very sensitive data and is supposed to track all the
updates on an employee without overriding the existing data blindly. If the manager
wishes, he/she should be able to retrieve all the updates for a specific time frame. To
add such functionality, entity components offer effective date feature. To create an
effective dated entity, follow these steps:

1.

Q happened at runtime. And finally to identify the most recent change in

Double-click on the entity on which you want to enable effective dating and
then select the General navigation tab in the overview editor to display the
Property Inspector for an entity.

In the property inspector window, select EffectiveDated for Effective
Date Type.

The next step is to specify attributes from the entity as effective start date
and end effective date. Select the Attributes tab in the entity overview editor,
and then click on the desired attribute and set it as effective start date, either
using the Start Date drop-down list in the Property Inspector window, or
using the Start Date radio button in the overview editor. Similarly select
another attribute in End Date. Make sure you are marking the start and end
dated attributes as Keys (along with the existing keys) in the entity object

to prevent multiple records with the same start and end date.

To track multiple changes in a day, you can mark an attribute as
Effective Date Sequence, which will store the sequence of changes which

the sequence mark an attribute as Effective Date Sequence Flag, which
will store and indicate the latest modified row.

The runtime behavior of effective date handling is controlled by the effective date
mode set for the effective dated entity. The following code snippet sets the effective
date mode as EFFDT UPDATE_CHANGE_INSERT MODE on an effective dated entity:

empEntityImpl.setEffectiveDateMode (Row. EFFDT_ UPDATE CHANGE INSERT MODE
)
empEntityImpl.setSalary(10000) ;
getDBTransaction () .commit () ;

[78]

Chapter 3

In this example, when an effective dated row is updated, the framework splits the
modified row into two rows. The modified row is end dated on the effective date -1
and a new row is inserted that fits between the effective date and the start date of the
next row in the effective date timeline. Note that the effective date in this example is
considered as the current date for a user who is viewing or altering values.

More effective date modes are available in the oracle. jbo.Row
interface. To learn more about this, refer to the ADF Model Java
API Reference documentation available online. html. To access the
% documentation visit http://www.oracle.com/technetwork/
e developer-tools/jdev/documentation/index.htmland
navigate to Oracle JDeveloper and ADF Documentation Library |
API AND TAG REFERENCES | ADF Model Java API Reference.

Defining the primary key

The primary key uniquely identifies an entity instance in the collection. When you
generate an entity object from the database objects, the design time will try to infer
the primary key definition from the data dictionary. If there is no primary key found
for the database objects and the underlying database is Oracle, the wizard will pick
up the RowID pseudo column, which uniquely identifies a row within a table and
marks it as the primary key. In all other cases, you as a developer are responsible

for defining the primary key.

Best practices when defining the primary key:

* Do not use the default pseudo column RowId as the primary key to deal with
transaction sensitive business data. For example, if you delete a row from
a table, a database might re-use its RowId value to a row inserted later.
This may result in serious side effects for a business application.

* Prefer surrogate keys over a composite primary key.

* Do not allow the user to modify primary key fields from Ul Note that the
framework uses the primary key to identify the corresponding row in the
model. When you change the primary key from the Ul, the data displayed in
the UI and model go out of synchronization. In ADF 11.1.2.0.0 release, Oracle
has added minimal support for allowing primary key modification during
entity creation from Ul However, this still does not work for a composite
primary key (multiple attributes as a primary key). If the use case demands
an update on the primary key, try adding a surrogate key to the table and
mark this as the primary key.

[79]

Introducing Entity Object

To programmatically find the entity object by using the primary key, you can
call findByPrimaryKey () on the corresponding EntityDefImpl as shown in
the following code snippet:

//This method finds the employee entity instance for

// employee id

private EmployeeEOImpl findEmployeeById(int empId) {
//Find the entity definition from the implementation class

EntityDefImpl orderDef = EmployeeEOImpl.getDefinitionObject () ;
//Create the Key object

Key orderKey = EmployeeEOImpl.createPrimaryKey (new Integer (empId)) ;
//Find and return the desired instance

return (EmployeeEOImpl)orderDef.findByPrimaryKey
(getDBTransaction(), orderKey) ;

}

The f£indByPrimaryKey method is called on an entity definition and this will try to
find the entity from the entity cache first and if not found it will query the database.

Inheritance hierarchies in entity objects

Though inheritance is a common concept in object oriented programming languages
such as Java, relational database management systems do not have this concept in
place. As an entity object is considered a Java representation of datasources such as
tables, introducing inheritance in an entity object is a bit tricky.

ADF entity objects use a single table per hierarchy approach while implementing
multiple inheritances. To make it clear, the datasource for entities in the inheritance
hierarchy would be a single table. Child entities can be mapped to extra columns
from the same table, if needed. The polymorphic discriminator type is introduced
to simulate inheritance hierarchies in entity and view objects. Each entity in the
hierarchy will have a different value for each polymorphic discriminator attribute
and run time will use this value to identify rows for each entity in the hierarchy.

Creating inheritance hierarchies for entity objects

Building inheritance hierarchies based on a single table is useful if you have database
tables that store different kinds of information in rows of the same table, which can
be distinguished using a discriminator column. Here is an example:

This example uses the EMPLOYEES table to represent the entity hierarchy.
DEPARTMENT ID (discriminator column) is used to distinguish rows belonging
to each entity in the hierarchy:

[80]

Chapter 3

[# MarketingBaseEmployeeEQ

Employeeld : Integer
Firstame : String
LastName : String
Ernail : String
PhoneNumber : String
HireDate : Timestamp
Jobld : String
Managerld : Integer
Departmentld : Integer

[ExecutiveSubEmployesEO & salesSubEmployeeEQ
Salary : BigDecimal Salary : BigDecimal
CommissionPct : BigDecimal CommissionPct : BigDecimal
Departmentld : Integer Departmentld : Integer

MarketingBaseEmployeeEO is the base entity in the hierarchy. The subtype entity
objects used in this example are ExecutiveSubEmployeeEO and SalesEmployeeEO.

To define the base entity object, follow the next steps:

1.

Right-click the model project and select New. In New Gallery, expand
Business Tier, select ADF Business Components, and then select Entity
Object. Click on OK to continue.

In the Create Entity Object wizard, enter the entity name and package for
the entity, and select the schema object.

For example, enter the entity name as Market ingBaseEmployeeEO and select
EMPLOYEES as the schema object.

On the Attributes page, select only those attributes that are relevant to the
base entity object.

This example removes Salary and CommissionPct from the
MarketingBaseEmployeeEO.

On the Attribute Settings page, select the attribute that needs to be marked
as a discriminator, and check the Discriminator checkbox. You must also
supply the default value for the discriminator attribute.

For example, MarketingBaseEmployeeEO marks DepartmentId as
Discriminator and the default value is set to 20.

Click on Finish to complete the entity creation.

[81]

Introducing Entity Object

To define subtype entity objects in the hierarchy, perform the following steps:

1. In New Gallery, select Entity Object and click on OK.

2. In the Create Entity Object wizard, enter the entity name and package for
the entity, and click on the Browse button next to the Extends field to select
the parent entity for the entity that is being created.

For example, SalesSubEmployeeEO is built by choosing
MarketingBaseEmployeeEO as parent.

3. On the Attributes page, select the attributes that you want to include in
the subtype. Note that IDE, by default, will not display attributes from the
table, which is already present in the parent entity. To override the attributes
present in the parent entity, click on the Override button and choose the
desired attributes. You must override the discriminator column from the
parent entity, as the child entity has to supply a distinct default value for
the discriminator column.

4. On the Attribute Settings page, select the discriminator attribute and change
the Default Value field to provide a distinct default value to the entity
subtype being created.

For example, for SalesSubEmployeeEO, the default value for DepartmentId
is set as 80.

5. Click on Finish to complete the entity creation.

You can follow the preceding steps for generating entity objects in any hierarchy.
The story is not complete yet. We will discuss how to build a view object for entity
objects participating in inheritance hierarchy in the section entitled Inheritance
hierarchies in view objects in Chapter 4, Introducing View Objects.

When you execute a view object built by using an entity, which acts as a base entity
in the hierarchy, the framework will not try to add any special WHERE clause to reflect
the discriminator attribute values of the entity object. The filtering based on the
discriminatory attributes happens later in the execution cycle when the view rows
are being created from the result set. Those rows, which satisfy the discriminator
attribute values, will only be present in the final row set.

While finding entities in a hierarchy by using primary key, if you also want
to include subtypes in search, use the £indByPKExtended () method from the
EntityDefImpl class:

EntityImpl empEOImpl = empBaseEODef . findByPKExtended
(getDBTransaction(), empIdKey, true);

[82]

Chapter 3

Updatability of entity attributes

If you do not want an attribute to always be updatable, you can use the Updatable
property to control when the value of a given attribute can be updated. The
Updatable property is displayed as a drop-down list in the Details tab on the
Attributes page. The possible values are Never, While New, and Always.

* Never: An attribute is never updatable. You will use this property to
prevent an update on an attribute, unconditionally. For example, if an entity
object has some derived attributes, whose values are calculated from other
attributes present in the row, you should mark the updatable property as
Never to prevent unwanted updates.

* While New: An attribute is updatable, if the entity object is newly created
and the changes (transaction) are not committed to the database. Once the
changes are committed, the attribute becomes read only. This property is
useful if you want the client to update attributes only during the creation of
rows and not after that. For example, if an entity object has some attributes
for capturing the name of the user who created the row, you can set the
Updatable property as While New to prevent subsequent updates on
this field.

* Always: An attribute is always updatable. This is the default setting for
an attribute.

Refreshing attributes on posting changes to the
database

If certain columns in your table are populated through database trigger or stored
procedure when the data is posted to the database, it is necessary to refresh the
corresponding entity object attributes with values from the database after posting
data to the database. You can turn on Refresh on Insert or Refresh on Update for
such attributes and the rest will be taken care of by the framework.

To turn on the Refresh on Insert or Refresh on Update options, open the entity in
the overview editor, select the attribute that needs to refreshed, and then select the
desired refresh option in Property Inspector. The framework will update the refresh
enabled attributes on the database post operation.

[83]

Introducing Entity Object

For example, if you have set Refresh on Update for DepartmentId in DepartmentEO,
when the modified data is posted to the database the framework will modify the
UPDATE statement, as shown in the following code snippet, to return DEPARTMENT ID
from the database. Once this statement is executed, the framework will populate
Department Id with values returned from the database.

BEGIN UPDATE DEPARTMENTS Departments SET DEPARTMENT NAME=:1 WHERE
DEPARTMENT ID=:2 RETURNING DEPARTMENT ID INTO :3; END;

The attribute's refresh properties are available only with Oracle database. If your
application uses a different database, these properties may not work.

Marking an attribute as mandatory

This option marks the attribute as a mandatory one and this will be enforced during
the entity-level validation.

The Mandatory checkbox option is displayed in the Details tab of the Attributes
page in the entity object overview editor.

Checking data inconsistency by using the Change
Indicator attribute

When the business components runtime posts changes back to database, the
framework will try to ensure that the data update is not on a stale object. This is done
by executing the SELECT query for the modified entity and comparing the originally
retrieved values for all attributes with values from the database. If you do not want
the framework to compare all the attributes to detect stale data, you can mark one or
more attributes as Change Indicators so that the entity runtime will use only those
attributes to detect if the row has been modified since the user queried it last time.
This concept is explained in detail under the Concurrent access and locking section
discussed later in this chapter.

The Change Indicator checkbox option is available in the Details tab of the
Attributes page in the entity object overview editor.

Queriable attributes

This is a Boolean flag that decides if you can query the attribute. If the value is
true, attribute will be part of the SELECT clause generated by the view objects
based on this entity.

The Queriable checkbox option is available in the Details tab of the Attributes page
in the entity object overview editor.

[84]

Chapter 3

Tracking change history

If you need to keep track of auditable business data, such as when an entity was
created or modified and by whom, or the number of times the entity has been
modified, you can make use of the Track Change History option provided by
the framework.

To configure the history column, in the editor, choose the attribute that needs to

be stored in the history information and then in the Property Inspector, select the
appropriate history type by using the Track Change History drop-down list. The
history attribute value will be populated by the framework before posting data to the
database. The following are the history columns provided by the framework out of
the box:

* Created On: This attribute is populated with the time stamp of when the
entity instance was created.

* Created By: This attribute is populated with the name of the user who
created the entity instance.

* Modified On: This attribute is populated with the time stamp of when the
entity instance was modified.

* Modified By: This attribute is populated with the name of the user who
modified the entity instance.

For example, consider a use case where you want to track the last updated date

on record. To avail the framework feature for tracking the last updated date, you
may need to add a column of type TIMESTAMP in the database table to store the last
updated date. Now in your entity object, make sure that the attribute corresponding
to this column is mapped to java.sqgl.Timestamp (or a similar type such as oracle.
jbo.domain. Timestamp). Mark this attribute as a history column by selecting
Modified On by using the Track Change History drop-down list. At runtime, when
the transaction is committed, the framework will take care of populating this file
with the logged-in user name.

If the existing history types are not good enough to meet your use cases, ADF
provides a way to add custom history types that can be used by the developers
as we discussed earlier. To learn about custom history type creation, refer to the
section Building custom history types in Chapter 5, Advanced Concepts on Entity
Objects and View Objects.

[85]

Introducing Entity Object

Configuring Ul hints for an attribute

An entity component has the ability to define control hints on attributes. Control
hints are typically used for building a model driven UL The view layer can
automatically display the queried information by using UI hints set for each attribute
present in the collection. The UI hints include properties such as display hint, label,
tool tip, format type, format, control type, and display height and width.

The Ul hints for an attribute are set by using the UI Hints tab in the Attributes

page in the entity object overview editor. Note that when you build a view object

by choosing the entity object as the datasource, all the UI hints from the underlying
entity object will be copied into the view object. The UI hints defined on a view
object can be carried over to the ADF-rich client components through ADF-specific
Expression Language (EL) at runtime. We will cover these items in detail when we
discuss building databound web user interfaces in Chapter 8, Building Databound Web
User Interfaces.

Specifying dependency attributes

If the value of an attribute depends on other attributes in an entity object, whenever
driving attribute changes, the dependent attribute value needs to be recalculated.
The Dependencies setting does this job out of the box. The Dependencies tab will
help you to add other attributes as dependencies to the selected one. The framework
will recalculate the dependent attribute value whenever any attribute in the
dependencies list changes.

The dependencies for an attribute are set by using the Dependencies tab of the
Attributes page in the entity object overview editor.

Commonly used properties of an entity object

In the previous section, we discussed how to configure properties for an entity
attribute. There are a set of configuration properties available at entity object level as
well. These properties are provided to customize the default behavior of an entity,
overriding the default settings.

Setting an alternate key for an entity object

An entity may have attributes, which uniquely identify an instance in the collection
apart from its primary keys. These attributes qualify for alternate keys on entity.

[86]

Chapter 3

To define an alternate key for an entity object, perform the following steps:

1. Double-click on the entity object to open up the overview editor. Select the

General navigation tab and expand the Alternate Keys section. Click on the
green plus icon to define an alternate key.

In the pop-up window, enter the name for the alternate key and then
select the attributes from the available list, which defines the alternate
key. Shuttle them to the selected list. Alternative keys can also be defined
by right-clicking on the entity object and then choosing the New Entity
Constraint option.

The advantages of defining alternate keys are as follows:

Alternate keys are indexed and are useful for finding the entity instance in
the cache by executing findByAltKey () on the EntityDefImpl class. Here is
an example:

//Find employee entity definition

EntityDefImpl empEODef = EmployeeEOImpl.getDefinitionObject () ;
String email= "jobineshexyz.zom";

//Email has been defined as alt key on entity

Key emailAltKey = new Key (new Object[] { email });

//Find by alt Key 'EmailAltKey' on employee entity definition

EntityImpl employeeEO = empEODef.findByAltKey (getDBTransaction (),
"EmailAltKey", emailAltKey, false, true);

Alternate key attributes can be used to define the Unique Key Validator for
an entity.

Specifying custom properties

This option will help you to define custom properties that the entity object can
access at runtime. This is conceptually similar to the properties used in Property
Set that we discussed earlier in this chapter. But the custom properties defined in

entity object are local to the entity object. To define custom properties, perform the
following steps:

1.

Open the entity object in the overview editor. Click on the General tab and
expand the Custom Properties section.

Click on the green plus icon displayed in the Custom Properties section and
choose the Translatable or Non-translatable property as appropriate.

If it is a translatable property, the actual definition will be in a localized properties
file. All the non-translatable properties will be stored with the attribute definition
in the entity object descriptor XML file.

[87]

Introducing Entity Object

Defining entity association

The association describes the relationship in the entity data model. When you define
an association, the wizard generates an accessor, which can be used for accessing
entities participating in the other side of association, in the entity.

To create an association between entities, perform the following steps:

1.

5.

Right-click on the model project where you want to define an association and
select New.

In New Gallery, expand Business Tier, select ADF Business Components,
and then select Association.

On the Name page, you can type the package and name for the association
and then click on Next. On the Entity Objects page, you are supposed to
specify the cardinality for the association, and for the source and destination
entity attributes, which form the association.

Clicking on Next, the Association Properties page will be displayed,
where you can decide whether the association needs to be unidirectional
or bidirectional. If you select the checkbox to expose the accessor in source
and destination entities, the association becomes bidirectional, otherwise
association turns into unidirectional.

Click on Next and then click on Finish the wizard.

The following are the different types of associations based on the cardinality of
the relation:

One to One: An entity instance is associated to a single instance of
another entity

One to Many: An entity instance is associated to multiple instances on
another entity

Many to One: Multiple instances of an entity are associated to one instance
of another entity

Many to Many: Multiple instances are participating in the association at both
the ends

While defining association by using the IDE, you may notice multiple cardinality
options in the dialog window. Though the list contains many options, runtime
will end up in generating one from the four categories of associations (that we just
discussed) in all cases. The following table lists the mapping between association
types and various cardinalities used in the association.

[88]

Chapter 3

Association types Cardinality in association
0..1to*
One to Many
1to*
0..1t00...1
One to One 0..1to1
1t00...1
*tol
Many to One
*t00...1
Many to Many *to*

To programmatically access the destination entities, you can use the association
accessor generated on entity implementation class, as shown in the following
code snippet:

EntityDefImpl deptEODef = DeptEOImpl.getDefinitionObject () ;

//Find Creates the Key to find Department

Key deptIdKey = DeptEOImpl.createPrimaryKey (new Integer (deptId)) ;
//Find the Department entity using deptId

DeptEOImpl deptEOImpl = (DeptEOImpl)departmentEODef.findByPrimaryKey (g
etDBTransaction (), deptIdKey) ;

//Access Employees for this depertament using association
//accessor getEmpEO () generated on DeptEOImplclass
RowIterator rowIter= DeptEOImpl.getEmpEO() ;
while (rowIter.hasNext ()) {

Row row=rowIter.next () ;

//Row represent Emp entity instance

//Business logic goes here

}

When you access the destination entities by using the association accessor attribute,
the behind the scenes framework uses the association definition to form the WHERE
clause and sets the bind variable with values from the source entity, and executes the
SELECT query with the WHERE clause to retrieve destination entities.

Composition association

Association type, which we discussed in the previous section, relates source with
destination entities where both parties can exist independent of each other. However,
this may not be true for all relations. For example, consider the relation between

car and engine, where the engine cannot exist without the car. If the container is
destroyed, normally every instance that it contains is destroyed as well. This is

called composition association.

[89]

Introducing Entity Object

To mark an association as composition association, select the Composition
Association option in the Association Properties page in the overview
editor window.

Properties of composition association

When you define association, the overview editor window will display the Behavior
tab as shown in the following screenshot:

-] Behavior

Specify the behavioral aspects of this association,

Ise Database Key Constraints
Composition Association
[] optimize For Database Cascade Delete
[] Implement Cascade Delete
[] Cascade Update Key Attributes
[] Update Top-level Histary Columns
Lock Lewel:

(JMone (%) Lock Container () Lack Top-level Container

The properties available under the Behavior tab are as follows:

Use Database Key Constraints: This property does not have any ADF
runtime implementation. It is used to create the foreign key constraints in the
database when you generate the database table from entity objects, which
participate in association.

Implement Cascade Delete: This option will allow you to unconditionally
delete the composed entities together with composing entities. If this is
deselected, runtime will not allow the deletion of a parent entity if it has any
child entities. Use this feature if you do not want child entities to exist on
removal of parent entity.

Optimize for Database Cascade Delete: This option will act as hints for
the runtime to optimize the deletion of detailed entities participating in the
association. If this option is selected, when you delete the parent, detailed
entities will not trigger an individual DELETE command. Your database
should have the ON DELETE CASCADE constraint specified to take care of
the deletion of entries from the child tale. This feature is useful when you
do not want to replicate the database constraints in the middle tier. This
approach makes sense, if there is less chance for the application to migrate
to a different database (or to a different datasource) in future.

[90]

Chapter 3

* Cascade Update Key Attributes: This option will automatically update
foreign keys in the child entities when the primary key in the parent tale
is changed. Enable this option if the application allows the user to edit the
foreign key in the parent row.

* Update Top-level History Columns: This option will trigger the history
column (Modified On or Modified By) update on the parent when the child
is removed, modified, or added. This feature is useful if you are working on
transaction-sensitive applications where you may need to update the history
columns in the parent row when any changes in the child rows are posted to
the database. This history column update for the parent row is triggered with
this setting even if there is no change in the parent row attributes.

* Lock Level: This option will issue a lock on the composing parent entity
whenever the composed child entity is locked during the data update.
The following are the various lock levels that you can choose from:

[e]

None: No locking is issued on the parent when the framework
acquires a lock on the child entity (destination).

° Lock Container: This option locks the immediate parent entity
(source entity in the association definition) when the framework
acquires a lock on the child entity (destination entity in the
association definition).

° Lock Top-level Container: Framework locks the topmost entity
object in the composition association hierarchy when the framework
acquires a lock on the child (destination) entity object. The logic to
lock the top level container walks up the association hierarchy and
stops either at the top level or when a composition association that
has the Lock Top-level Container flag turned off is found.

Retaining the association accessor row set

If your code makes multiple calls to the same association accessor attribute while
serving a request, you can try fine-tuning the execution by opting for retaining the
association accessor row set. This option is available in the entity object overview
editor under General in the Tuning section.

[91]

Introducing Entity Object

When you set the retain association accessor row set on parent, the framework will
execute the query to fetch the child row set for the very first access by using the
accessor attribute and the same row set will be re-used for subsequent accesses. As
the child row sets are retained in this case, the client may need to call reset () to
reset the previous iterator state:

RowIterator rowIter= DeptEOImpl.getEmpEO() ;
rowIter.reset();
while (rowIter.hasNext ()) {

Row row=rowIter.next () ;

//Row represent Emp entity instance

}

Adding validation

Ensuring the validity of business data is critical for any enterprise application. ADF
Business Components are packaged with a set of built-in validation rules. You can
even add more rules, if the existing rules do not meet your requirements. For an
entity object, validation rules can be defined at two levels as follows:

e Attribute level validation rule: The attribute level validation rules will be
fired before updating the entity attribute

* Entity level validation rule: The entity level validation will be fired either at
the row selection changes or when the client commits the transaction

Adding a validation rule to an attribute
To add a validation rule to an attribute, follow the next steps:

1. Double-click on the desired entity object to open up the overview editor and
then click on the Business Rules tab. To add the validation rule, right-click
on the attribute and select New Validator.

In the Add Attribute Rule dialog, select the rule type and define the rule.

The Validation Execution tab in the dialog window will allow the developer
to set some condition for executing the validation.

4. The validation error level such as Error or Informational Warning, and error
messages are set by using the Failure Handling tab. Error messages can take
parameters whose values can be supplied by using the Groovy expression.
When you enter the token into the text of the error message — delimited by
curly braces (for example, {errorParam})—the Token Message Expressions
table at the bottom of the dialog displays a row that allows you to enter a
Groovy expression for the token. The Groovy expression allows you to refer
the underlying model data without really referring the exact instance.

[92]

Chapter 3

For example, if you enter a failure message for the date field as {hireDate}
should be less than {todaysDate}, the Token Message Expression table
displays hireDate and todaysDate under the Message Token column as
shown in the following screenshot:

. Edit Validation Rule for: HireDate (=25

Define the Validation you want to perform with this rule and configure the Validation Failure response.

Rule Definition Validation Execution Failure Handling

Validation Failure Severity (3) Error () Informational Warning

Failure Message

Enter text for the translatable validation failure messages.

Error Message: com.packtpub.adfguide.ch4.model. entity. EmployeeEQ. HireDiate_Rule_D \-45
{hireDate} should be less than {todaysDate}|

Token Message Expressions:

Message Token Expression
hireDate adf.object.hints.HireDate. |abel
todaysDate adf.currentDate

Hint: to add a token message expression, indude a token of the form {0} in your error message string.

Help Ok Cancel

The Expression column in the Token Message Expression table takes
the Groovy expressions, which will be evaluated to the actual values at
runtime. For instance, in this example, the Expression field for todaysDate

contains a predefined Groovy syntax to refer to the current date, which is
adf.currentDate.

. Tolearn more about the Groovy support, refer to the Oracle white paper
% Introduction to Groovy Support in [Developer and Oracle ADF 11g, which
L is available online at http://www.oracle.com/technetwork/
developer-tools/jdev/introduction-to-groovy-128837.pdf.

[93]

Introducing Entity Object

If you need to provide specific validation implementation apart from the built-in
rules, select Method as Rule Type in the Add Validation Rule dialog window.
This action will generate a method in your entity object class. The methods take
the following signature:

public boolean validateXXX(String attributeValue)

The methods take the new attribute value as a parameter and return a Boolean flag.
As this method is invoked before setting the value as an attribute, your validate
logic is expected to treat the method parameter as a new value for the attribute.
The following example validates the name field and returns a Boolean flag:

/**
* Validation method for Name. Return false if name is null or
empty string
*/
public boolean validateName (String name) {
if (name != null && name.trim().length() == 0) {
Return false;

}

return true;

Adding a validation rule to an entity object

To add a validation rule to an entity, double-click on the desired entity object to
open up the overview editor and then click on the Business Rules tab. To add the
validation rule, right-click on Entity Validators and select New Validator. In the
Add Attribute Rule dialog, select the desired rule type from the list and finish the
rule definition as we did for the attribute level validation.

As we have discussed under the attribute level validation, custom methods can be
used to validate your entity as well. When you select Method as Rule Type in the
Add Validation Rule dialog window, the wizard will generate a method with the
following signature in your Entity Object class:

public boolean validateXXX (ArrayList ctxList)

Unlike attribute level validation, entity level validations will be triggered after the
model update, but before posting data to database. So, your validate method can
read entity attributes by assuming that they are holding the latest data.

[94]

Chapter 3

Transaction level validation

You can defer the execution of certain validation rule types such as Key Exists

and Method validations to transaction level (data control) by selecting the Defer
execution to Transaction Level option displayed under the Validation Execution
tab. You may need to keep in mind that transaction level validation does not really
defer until you commit a transaction. For a web application, as the application
module instances are getting recycled, runtime will call validate () on the data
control while posting data to the server. This call in turn will trigger both entity
level and transaction level validations. However, for a validation cycle, validations
defined at transaction level will be triggered only once for an entity type. In

other words, it is not triggered for each modified instance in the entity cache.

Defining a custom validation rule

To create a custom validation rule, right-click on the model project where you want
to define the validation rule and select New. In New Gallery, expand Business
Tier, select ADF Business Components, and then select Validation Rule. In Create
Validation Class enter the class name, package, and the rule's display name.
JDeveloper will display the custom validation rule along with the standard rules
when you choose to define validations for an entity.

Concurrent access and locking

When many users work on the same business data simultaneously, it is necessary
to ensure that the concurrent business transactions do not overwrite the other user's
changes inadvertently. Locking is a way to do this. ADF Business Components
supports locking out of the box. In this section, we will see how the locking is
handled in an ADF application and possible locking modes as well.

Configuring Locking Mode for an ADF application

The jbo.locking.mode configuration property controls how entities are locked.
This property is configurable from two places:

* Per application module level: Open the application modules in the editor
and then select the desired configuration. Click on the yellow edit icon to
open up the Edit configuration dialog box. Click on the Properties tab and
modify jbo.locking.mode to the desired value.

* Application level: Double-click on the adf-config.xml file in the ADF
META- INF folder in the Application Resources under the Descriptors panel
view in Application Navigator. Click on the Business Components tab on
the adf-config.xml editor window and set Locking Mode appropriately.

[95]

Introducing Entity Object

Supported values for jbo.locking.mode are as follows:

None: This implies the case where no locking is done when the user updates
arow.

Pessimistic: The pessimistic locking mode will try to lock an entity instance
in advance before allowing any changes by explicitly firing SELECT FOR
UPDATE on the underlying database row, and the row will remain locked till
you commit the transactions. This is not recommended for a web application
in optimistic mode, because during recycling of application modules
framework will issue a rollback on JDBC connection and potentially

client may loss all the lock associated with database connection.

Optimistic: The optimistic locking mode will try to lock the entity before
posting modified data to the database, followed by a check for stale data.

Optupdate: The optupdate locking mode will not issue lock on the row, it
will just see if all row attributes that are participating in the update have the
latest value from the database table.

To understand the concept of different locking modes further, let us take a look at
the following code snippet and analyze how the framework handles locking for
different locking modes.

//Find the employee entity using ID

EmployeeEOImpl empEO= findEmployeeById(1000) ;

//Modifies the entity name

empEO. setName ("John") ;

//Commit the transaction

getTransaction () .commit () ;

The following table illustrates how the locking behavior varies with locking mode for
the preceding code snippet:

[96]

Chapter 3

Business logic

Locking behavior

empEO. setName ("John") ;

getTransaction() .
postChanges () ;

or

getTransaction() .commit () ;

When an attribute is modified, the framework
will check the locking mode to take
appropriate actions.

If the locking mode is pessimitic, ADF
Business Components runtime performs the
following steps:

* Executes SELECT FOR UPDATE NOWAIT

on the underlying database row to acquire
lock.

* Checks if the originally retrieved values
of the entity attributes are the same as the
values in the database. If the entity has
any attribute marked as change indicators,
the stale data check is done only for those
attributes.

* The framework will not attempt to lock
the row for other locking modes during
this stage.

If the locking mode is optimistic or
optupdate, the concurrency handling happens
at this stage.

If the lock mode is opt imistic, the ADF
Business Components runtime performs the
following steps:

* Executes SELECT FOR UPDATE on the
row for the entity to acquire lock.

* Checks if the originally retrieved values of
the attributes are the same as the values in
the database. If the entity has any attribute
marked as change indicators, the stale data
check is done only for those attributes.

If the lock mode is optupdate, the framework
does not explicitly lock any database row.

ADF Business Components runtime generates
UPDATE with the WHERE clause to ensure that the
update is not happening on stale data. The WHERE
clause checks whether the originally retrieved
values of the attributes are the same as the values
in the database or not. Similar to the optimistic
locking mode, if the entity has any attribute
marked as change indicators, the stale data check
is done only for those attributes.

[97]

Introducing Entity Object

Securing entity objects

ADF entity objects are security-enabled components. You can restrict the action of an
entity by specifying the permission map.

To add the permission, double-click on the entity to display the overview editor.
Click on the General navigation tab, expand the Security section, and select the
desired operation —read, update, or remove. These operations are defined by the
oracle.adf.share.security.authorization.EntityPermission class and will
be used by the ADF security to authenticate the user. To test the functionality of the
class, application should be secured with ADF security. We will revisit this topic
with examples when we discuss ADF security in Chapter 14, Securing Fusion

Web Applications.

Enabling a batch update in an entity object

The batch update facility allows multiple update operations to be submitted to a
datasource for processing at once. If a use case demands an update on multiple
instances of the same entity in a single transaction, the update batching can be
turned on for the entity. This feature works with Oracle database.

To enable update batching on an entity, click on the General tab in the overview
editor, expand the Tuning section, check the Use Update Batching checkbox, and
specify the appropriate threshold.

1
‘Q Please be warned that entity refresh features such as Refresh on Update

and Refresh on Insert may not work in batch update mode.

Working with entity objects

We have covered the basic lessons on entity objects in earlier sections of this chapter. It
is time for us to put all the pieces together to understand the working of entity objects.

Programmatically creating an entity instance

The following example will help you to understand the create functionality on

an entity object. This example assumes that you have already generated an entity
object from the EMPLOYEES table and also generated Java classes for the entity object
and entity definition. In this example, we create an instance of an employee entity
object, populate the attribute values, and finally post the changes to the database
by committing the transaction. This method is defined in the application module
implementation class.

[98]

Chapter 3

//BApplication Module

public class HRServiceAppModuleImpl extends ApplicationModuleImpl
implements HRServiceAppModule {

public EmployeeEOImpl createEmployee()
//Get the EmployeeEODefImpl which is the
//java repsentstaion of EmployeeEO.xml
EmployeeEODefImpl employeeEODefImpl =
(EmployeeEODefImpl) EmployeeEOImpl.getDefinitionObject () ;
//Create the entiy instance in the current transaction

EmployeeEOImpl newEmployee =
(EmployeeEOImpl) employeeEODefImpl.createInstance?
(this.getDBTransaction (), null);

//EmployeeEO uses EmployeeID as PK

//EmployeeId is the PK
newEmployee.setEmployeeId (1000) ;
newEmployee.setFirstName ("Jobinesh") ;
newEmployee.setLastName ("Purushothaman") ;
newEmployee.setDepartmentId (10) ;
newEmployee.setEmail ("JOBINESH@XYZ.COM") ;

newEmployee.setHireDate (new
Timestamp (System.currentTimeMillis ())) ;

newEmployee.setJobId ("IT_ PROG") ;
try {
//Commit the transaction
getDBTransaction () .commit () ;
} catch (JboException ex) {
//If commit fails, then roll back the entire transaction
getDBTransaction () .rollback () ;
throw ex;

return newEmployee;

}

// Other methods go here

}

As this is our first attempt to programmatically create an entity instance, let us
explore the underlying execution path to get a better understanding of these APIs.

[99]

Introducing Entity Object

The first line in the createEmployee () method obtains EmployeeEODefImpl by
invoking getDefinitionObject () on the EmployeeEOImpl class. When you call
getDefinitionObject () on an entity class, the framework reads the corresponding
entity XML metadata file and generates the Java representation for the metadata. The
next line in the preceding code snippet creates an entity instance. Though this line
looks simple, it performs a lot of tasks for you behind the scenes. Default values of
attributes are initialized at this step. The entity object's state is set as Initialized.
An entity in the Initialized state will not participate in the transaction.

The entity instance is added to the entity cache once the primary key is populated.
When you set any attribute value, the entity's state transitions into NEw and will be
added to the transaction. Once all the required attributes are populated, the program
calls commit () on DBTransaction, which triggers postChanges () on the entity
object, followed by actual commit operation at database connection level.

SQL INSERT INTO statement /}

rEntity Object Cache

I i
| i
EntityDeflmpl.Createlnstance2(...); I_:__ﬂ Entity Impl Object |—|J E

DbTransaction.commit();

A detailed discussion on the transaction commit cycle for an entity is given in the
next section.

Entity object in a transaction post cycle

Let us now examine the find and update functionalities on an entity object. Take a
look at the following code snippet, which may help you to understand the APIs to
be used. This code is copied from an application module method:

//Get the Entity Definition

EntityDefImpl empEODef = EmpEOImpl.getDefinitionObject () ;

//Generate Key using empld parameter

Key empIdKey = EmpEOImpl.createPrimaryKey (new Integer (empId)) ;

//Find Emp entity using Key

EmpEOImpl empEO= (EmpEOImpl) empEODef.findByPrimaryKey (getDBTransacti
on(), empIdKey);

[100]

Chapter 3

//Update the

attribute

empEO. setFirstName ("Jobinesh") ;

//Commit transaction

getDBTransaction () .commit () ;

The following diagram shows the sequence of interactions between the entity
object, transaction manager, and datasource when you execute the find and
update functionalities on an entity:

[& 14: validate

15: entity and transaction level validate

SQL Builder

6: SELCET query_

[¢ 16: postChanges

»

i

17: postChanges

23: doBeforeCommit

v

24: beforeCommit

[Client| [DBTrasaction| ~ [Entity Defnition| Entity Entity
T Object Cache
1
1
1: findBYPrimarykey |
»r1__2: findFromCache >
3: createBIankInstance‘ U
Aipopulate 5 goselebtEnity
P 8: Entylmpl
0
9: setAttribute("AttributeName”.”new value”) T_|10: isAttributeUpdateable
11: attribute level validate
i 12: addTOTransactionManager
13: commit| [~

25: doCommit

26: doAfterCommit

v

27: afterCommit

v

[J18: lock

19: prepareForDML

20: doDML
21: doEntityDML

7: ResultSet J
4. _________________

22: UPDATE query

!

gl

[101]

Introducing Entity Object

The client retrieves the entity object, calling findByPrimaryKey () on an entity
definition by passing a key object. First, the framework will check the entity cache for
the entity, and if not found, the soL. SELECT query will be fired to read the row from
the database. An example is as follows:

SELECT DEPARTMENT_ ID, DEPARTMENT NAME, MANAGER ID, LOCATION ID FROM
DEPARTMENTS DepartmentEO WHERE DEPARTMENT ID=:1

Where binding parameter 1: 10

Native SQL generation for ADF business components is done by the
* SQLBuilder implementation class. Runtime picks up the right
% implementation based on the value set for the jbo.SQLBuilder
T property. This property can be either set globally by using adf -config.
xml or per application module by using the bc47j . xcfg file.

The entity cache will be updated with the retrieved entity instance and the status will
be marked as Unmodified. The client receives the retrieved instance.

In the next step in this example, the client updates an attribute by calling setter on
the entity instance. Before allowing the change, the framework will check if the
update is permitted on this attribute. If the attribute value is modifiable, the new
value will be validated and passed on to the entity. The entity status is transitioned
into Modified.

The transaction manager comes into the picture at this stage. oracle.jbo.server.
DBTransactionImpl2 is the default configured transaction manager for business
components. DBTransactionImpl maintains three lists to carry out the transaction
commit cycle:

e Validation listener list: This list contains entities for validation

* Transaction post listener list: This list keeps dirty entities which need to be
posted to the database

* Transaction listener list: This list contains application modules and entities,
which want to listen to the transaction commit phase

The modified entity instance will be added to all these three lists.

When the program commits the transaction later, the entity object will go through
the following stages:

1. The transaction manager validates all the entries from the validation listener
list by calling validate () on each listener, which includes dirty entities as
well. This will validate all the entity level validations that you have added.

[102]

Chapter 3

2. Once the entire validation is successful, the next phase is posting data to
the database. The transaction manager iterates through the transaction post
listener list and
calls postChanges () on each item. The data post for an entity happens
in multiple steps:

° Lock the entity: Locking algorithm is decided based on the
jbo.locking.mode property configured for the application module.
All our discussion in this section is based on optimistic locking mode,
which is the default locking mode set for a fusion web application.

The lock () method on the entity locks the current instance and

fires the SELECT FOR UPDATE query to lock the database row. If this
entity is participating in any composition association, the composing
entities will also get locked.

° Prepare the entity for DML: The prepareForDML () method is called
on the entity and it performs all the preparation prior to posting data
to the database. This includes updating history columns and other
custom updates, if any.

° Post data to database: The doDML () method generates appropriate
native SQL statement to perform INSERT, UPDATE, Or DELETE
processing for the row.

3. Once the data is posted to the database, the next phase is to commit the
transaction. The transaction manager will invoke beforeCommit () on each
element in the transaction listener list. Then it commits the transaction
and if successful, aftercommit () is called on each item in the transaction
listener list. The entity object's state will be reset back to Unmodified in the
afterCommit () method.

Summary

In this chapter, you learned general concepts behind an entity object, its architecture,
and configurations. We discussed the following items:

* Visual and declarative development of entity objects

* Commonly used properties of entity objects

* Entity object life cycle
But there is more to come on entity objects. We will be covering more advanced

examples on entities in Chapter 5, Advanced Concepts on Entity Objects and
View Objects.

[103]

Introducing View Object

In the last chapter we learned about the ADF Business Components, which is
responsible for posting changes to the database, namely the ADF entity object. In
this chapter, we will discuss the ADF view object, which is in charge of reading and
shaping the data for presenting it to the client. This chapter explains the architecture
of a view object, its usage, and runtime behavior.

In this chapter we will cover the following topics:

* Concepts and architecture
* Core features of ADF view objects
* Developing view objects

* Working with view objects

Introduction

An ADF view object is a business component that reads data from the datasource,
shapes the data to be used by clients, and controls the updates on the data. In today's
world, vast majority of the enterprise application uses a database as their primary
mechanism to store data. In a typical database-centric ADF application, a view object
implements the logic for reading database tables through SQL query, and contains
the logic for building the collection of rows that can be used by the client. It also
controls the data update by delegating the calls to underlying entities.

Concepts and architecture

A view object abstracts the raw JDBC APIs to read data from the database and
encapsulates the logic for managing the result set. The ADF view object has a very
flexible and layered architecture, which improves the extensibility of the system.

Introducing View Object

Ingredients of a view object

This is in continuation of our discussion on the constituents of a view object in
Chapter 2, Introduction to ADF Business Components. In this section, we will revisit the
same topic to analyze the concepts in depth. The following diagram represents the
runtime artifacts of a view object that help the view object to carry out the task at
different stages of the query execution life cycle:

..

View Object 1<----+ View Definition

1
1
L
View Link ! :
1ew | ﬂ Query Collection Cache
! :
I H . .
| : View Object 8¢ Query Collection
----- 3 +Query e—
i| Attribute Definitions Row
ﬁ N
View Criteria

View Criteria Row

i

Row Set

*Bind Variables
*Row Set Iterator

An ADF view object is composed of the following components:

* View definition XML file: This is the view object descriptor XML file,
which holds metadata definitions. The metadata includes the following:

o

The sQL. SELECT statement used in the view object

o

Bind parameter definitions used in the SQL. SELECT statement

o

Attribute definition describing each column returned by the
query — this includes Ul-related metadata, such as UI Hints
and UI Categories for attributes

Entity usage information (if there is entity backup for the view object)

[106]

Chapter 4

[e]

Metadata definition for list of values (LOV) and view criteria (query)

o

View accessor definition for accessing other view objects
° Business rules

View definition: This is the runtime Java class representation for the view
definition XML file. The default view definition class used by the ADF
Business Components' runtime is oracle.jbo.server.ViewDefImpl,
which can be extended to provide custom functionalities, if needed.

View object: This class represents a view object instance. The view object
instance manages the query execution at runtime. The default view object
class used by the ADF Business Components' runtime is oracle. jbo.
server.ViewObjectImpl. Developers can extend this class to add
custom functionalities, if needed.

View criteria: View criteria will let you define filter conditions for attributes
in a view object, which will be used at runtime to filter the query result.

This implementation takes the form of a query-by-example approach, which
allows the end user to supply values for attributes of the target view object in
order to form the desired search condition.

Bind variables: These are placeholder variables in a SQL statement used in
a view object. These variables will be replaced with the valid ones before
executing the query.

View accessor: This acts as a gateway for a view object to access another
view object. This is used in validation and LOV definitions.

A view object uses the following framework components to set up the infrastructure
for query execution and managing the result set:

Row: A row represents an element in the collection that is a result from a
query on a view object.

Row set: View object uses row sets to manage the collection of rows from a
query. The framework will create a different row set when the same view
object is used as a mechanism to query the datasource in different contexts.
Some of these areas act as query for list of values implementation and query
for child collection in master-child tree structure. Parameterized conditions
used for finding the row sets are maintained at each row set level.

Row set iterator: This enables the client to traverse the row set and work
with individual items. A client can create one or more row set iterators to
enumerate through the rows.

[107]

Introducing View Object

Query collection: A query collection contains the rows used in a view object.
A view object instance may maintain multiple query collection, depending
on the row filter (a data structure holding bind variable values) used by
different row sets to execute query. Note that a row or row set does not store
any data within it, rather they use query collection object for storing rows.

View link: View link connects two view objects, typically used for
implementing master-child relationships.

Core features of ADF view objects

The following are the important offerings from the view object:

Visual and declarative development
Read-only and updatable view objects
Automated master-child co-ordination
Domain-driven development
Query-by-example support

Caching of result set

Out-of-the-box pagination support
Built-in CRUD operations
Polymorphic view objects

Declarative settings for fine-tuning runtime performance
Customizable framework components

Scalable architecture through out-of-the-box support for activation and
passivation cycles

Developing view objects

In this section, we will learn about building and configuring view objects, using
JDeveloper IDE. This section mainly focuses on declarative development aspects.

Creating view objects

JDeveloper provides multiple options to build view objects. These options are
as follows:

Using the Create Business Components from Tables option: This option
allows you to build multiple view objects and underlying entity objects in
one go.

[108]

Chapter 4

To use this option, right-click on the model project and select New. In New
Gallery, expand Business Tier, select ADF Business Components, and then
select Create Business Components from Tables. Then follow the steps in
the Create Business Components from Tables dialog window. This option
will help you to define entity objects, view objects, and the application
module in a single go. We have discussed this approach in Chapter 2,
Introduction to ADF Business Components under the section entitled Building

a simple business service.

Using Create View Object wizard: This option allows you to create one view
object at a time. This is discussed in the following section.

Using the Create View Object wizard

To build a view object by using the Create View Object wizard, follow these steps:

1.

Right-click on the model project where you want to generate view object and
select New.

In New Gallery, expand Business Tier, select ADF Business
Components, and then select View Object, which will open the
Create View Object wizard.

The first page in the Create View Object wizard allows you to enter the view
object name and package name. It also provides options to build view objects
from the following database source types:

o

Entity object: An entity-based view object is the right choice when
the client needs to update the data. In this case, the view object acts as
a mechanism for querying the datasource. The actual data is stored,
using the entity object instances.

SQL query: A SQL-based view object is a read-only view object,
which is built using an explicitly specified SQL query.

Programmatic: If the default implementations of view objects are

not enough to meet the requirement for querying some specific
datasources such as third-party services or non-database data stores,
you can go for a programmatic view object. The view object's runtime
behavior is controlled by using handwritten code by overriding the
standard call back methods. This is also useful if you need to query
by using database objects such as stored procedures, which are not
supported by default by the view object component.

[109]

Introducing View Object

° Static list: A static list datasource-based view object is useful if
the view object needs to act as value holder for a set of non-critical
business data, which does not change at runtime. For example, if you
need to display the colors of a rainbow as a drop-down list in U],
you can create a static list-based view object containing all the seven
colors and build the Ul based on this view object.

Creating a view object with entity usage mapping
The next steps in the wizard's dialog vary with the datasource that you have selected
in the first steps of the Create View Object wizard. If you chose entity objects, the
wizard dialog will display the following steps:

1.

If you chose entity object as datasource in the first page of the Create View
Object wizard, you will see the Entity Objects page in the next step. In the
Entity Objects page, you can specify one or more entity usages by shuttling
the entities from the Available to the Selected list. The first entity object that
you select is known as primary entity usage and the rest in the selected list
are secondary entity usages.

If you select a secondary entity usage in the preceding step, you must
complete the following configurations.

Select an association for the secondary entity usage from the drop-down list.
Based on the association definition, the editor window will populate source
entity usage. Now you need to select the suitable join type such as inner
join, left outer join, or right outer join.

You can also specify the Updatable, Reference, and Delete Participant
properties for entity usages:

° Updatable: This property decides if the entity object attributes can
be modified through view object. By default, the first entity object is
updatable and subsequent ones are read-only.

° Reference: Select this option if you want the information from this
entity object to be treated as read-only reference information in this
view object. Attribute values are dynamically fetched from the entity
cache when a joining key attribute changes.

[110]

Chapter 4

SHEmployeeDetalsvo.ml

General " .

Entity Objects Entity Objects

Attrbutes ¥

Business Rules Available:

Query] com.packtpub. adfauide.ch4. model HRModel
Java (il com.packipub.adfiguide. ch4.madel. entity
View Accessors

List UI Hints

Ul Categories

Qverview | Diagram Source History

These enfity objects are used by the view object for access to the atiributes and bus

-

Selected: Subtypes..,
EmployeeE0

Entity Usage: |DepartmentEQ

Definition: com.padectpub. adfiquide. ch4. model. entity. Depart. ..
Association: |), EmpDeptFkAssoc. DeparimentEO 1 v
Source Usage: |EmployeeEQ .
Join Type: inner join -
Updatable | Reference

For example, take a view object called EmployeeDetailsVO, with
EmployeeEO and DepartmentEO entity usages. These entities are
associated through the Department1d attribute, which is available
in both the entities. If the DepartmentEO is marked as a Reference,
modifying the EmployeeEO: :DepartmentId attribute in the view

object from 10 to 20 changes the department that the current
employee works in, and framework automatically retrieves the
proper department name into the current view. .

Participate in Row Delete: This property decides if the removal

of row in a view object will result in deletion of the entity instance
participating in the view object row. Select this option when you
have defined the secondary entity usage as Updatable and your use
case demands the action of removing rows in the Ul to delete the
participating secondary entity object as well. This option is enabled
for the primary entity usage by default.

Once you selected entity objects and associated properties, click Next
to continue the wizard.

[111]

Introducing View Object

2.

The Attributes page in the wizard will allow you to select attributes for the
view object by shuttling the attributes from the Available to the Selected
list. You can optionally select individual attributes in the Selected list, and
change the attribute names or define new attributes by clicking on the New
button available on the same page. Once you are happy with the changes,
click on Next to display the Attribute Settings page.

The Attribute Settings page will allow you to alter the view object attribute
properties copied from the corresponding entity object usage. Click on Next
to display the Query page.

In the Query page, you can modify the mode of the view object. The possible
options are as follows:

o

Normal: This is the default mode for a view object, which will allow
you to edit only the WHERE clause for the query.

Expert: When you enable the Expert mode, the wizard will allow you
to edit the entire query. If you need any assistance in defining the
query, click on Query Builder to open up the SQL statement editor.
This editor may help you to visually build the query by selecting
tables, columns, and other common SQL clauses. However, you
should be careful when you work in Expert mode as with this mode
IDE provides limited attribute mapping assistance for any altered
SELECT clause.

Declarative: In the Declarative SQL mode, the view object will
formulate its SQL statements at runtime based on the columns
selected by the client for display. More on declarative view
objects is discussed in the next section.

The wizard will also allow you to specify the order By clause, using
this screen. You can either directly include the ORDER BY clause in the
corresponding field or click on the Edit icon to do this visually, using
an editor.

You can either finish the Create View Object wizard at this stage or continue
the same to perform a few more optional configuration tasks. If you continue
with the wizard by clicking on Next, you will get a screen to define the bind
variable. Note that bind variables are variables that are used in place of
dynamic input values in a SQL statement. We will discuss this soon in the
section entitled Querying datasource using view object.

If you proceed further, the next page in the wizard will allow you to generate
Java classes for view object components.

[112]

Chapter 4

The next page is the Application Module page, which will allow you to
attach the newly created view with an application module. As we will be
discussing bind variables and Java implementation later in the chapter,
we are not focusing much on these options at this stage.

Creating a view object with SQL query

This section will teach you how to build a view object by choosing SQL query as the
datasource. To create a view object from SQL query, follow the steps listed here:

1.

Right-click on the desired model project and select New. In the
New Gallery dialog, expand Business Tier and select ADF
Business Components | View Object.

Choose SQL Query as the datasource in the first page of the Create View
Object wizard. Enter the package and name for the view object. Then click
on Next.

In the Query page, enter the appropriate SQL SELECT statement. If you
are not comfortable with building a SQL query, you can avail the visual
tool support for generating a query by clicking on Query Builder. Click
on Next to continue.

In the Bind Variable page, define the bind variable that your query uses
(if any). Click on Next to continue.

The Attribute Mapping page displays the mapping between query columns
and attribute names. You can optionally edit the mapping in this screen.
Click on Next to continue.

The Attributes screen displays all the attributes generated from the query.
You can optionally add new transient attributes in this page.

The next page displays the Attribute Settings options for each attribute in
the view object. You can modify the attribute definition as appropriate.

On continuing the wizard, you will see the Java page that will allow you
to generate Java classes. You can do this later as well; we will discuss this
concept shortly.

The next page will list the application module that you have in the project.
Select the Add to Application Module option if you want to expose the view
object to be used by the client. Click on Finish to complete the creation of the
view objects.

[113]

Introducing View Object

Creating a view object with static list

This section will briefly teach you how to build a view object by choosing static list as
the datasource. Here are the steps:

1. Right-click on the desired model project and select New. In the
New Gallery dialog, expand Business Tier and select ADF
Business Components | View Object.

2. Choose Static List as the datasource in the first page of the Create View
Object wizard. Enter the package and name for the view object, and click
on Next to continue.

3. In the Attributes page, enter the attribute names and click on Next
to continue.

4. Inthe Attribute Settings page, override the default properties for the
attributes, as appropriate. Make sure at least one attribute is marked
as Key Attribute for the view object. Click on Next to continue.

5. In the Static List page, enter static values for the attributes and click on Next
to continue.

6. Inthe Application Module page, choose Add to Application Module for
exposing this view to the client. Click on Finish to generate the view object.

Creating a programmatic view object

In this wizard, the basic steps for building the template for a programmatic view
object are the same as those we have discussed for creating a view object with a static
list, with few exceptions. When you finish generating a programmatic view object,
IDE generates Java implementation for the view object where you can add custom
logic for handling the life cycle. As this requires a thorough understanding of the
view object implementation, we will defer this discussion until Chapter 5, Advanced
Concepts on Entity Objects and View Objects. For details, see the section Building
programmatically managed view objects in Chapter 5, Advanced Concepts on Entity

Objects and View Objects.

Creating a declarative SQL mode view object

While discussing the Create View Object wizard, we had a glance at the possible
SQL modes for a view object in the query page of the wizard. Let us revisit this topic
to discuss the declarative SQL mode in detail.

[114]

Chapter 4

A declarative SQL mode view object will formulate its SQL statements at runtime
based on the columns selected by the client for display. A declarative view object
will simplify the query in two steps:

Removing the attributes in the SELECT list, which are not selected by
the client

Removing tables in the FrRoM clause — if the pruning rules allow this

There are two approaches to define a declarative view object:

% the documentation visit http://www.oracle.com/technetwork/

When you create a view object by selecting an entity object as the datasource,
the Query page in the wizard will help you to set the Declarative mode for
the view object.

Alternatively, if you have already generated an entity-based view object,
double-click on the view object to display the overview editor. In the
overview editor window, click on the Query tab and then click on the Edit
SQL Query icon to display the Edit Query dialog window. In the Edit Query
dialog window, select the Query node and then select the Declarative mode
in the drop-down list.

A detailed discussion on creating declarative SQL mode view objects
is available in Oracle Fusion Middleware Fusion Developer's Guide under
the topic Working with View Objects in Declarative SQL Mode. To access

developer-tools/jdev/documentation/index.html and
navigate to Oracle JDeveloper and ADF Documentation Library |
Fusion Developer's Guide. Use the search option to find specific topics.

While using declarative view objects,there are certain points that you need to keep
in mind:

Only entity-based view objects can be turned into declarative mode

Primary key attributes will always be in the SQL SELECT statement generated
at runtime.

Attributes, which need to be conditionally excluded from the SQL SELECT
statement, should have Selected in the Query (which is mapped to the
attribute IsSelected in the view object XML) property set to false. In other
words, if you leave the default value of true for the selected property, this
forces the attribute to always appear in the query. You can edit this value
through the Property Inspector window for the attribute.

[115]

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

Introducing View Object

* If an attribute is configured to depend upon other attributes, the driving
attributes will be automatically selected whenever the dependent attribute is
part of the selected attribute list.

* If a view object is based on multiple entity object usages (built by choosing
multiple entities), the following things can be true:

o

The table corresponding to the primary entity usage will always be
part of the join in the query

The table corresponding to secondary (non-primary) entity usage
will be part of the join query, if it has at least one attribute in the
selected list

The primary key attribute of a table corresponding to an entity usage
will be automatically added to the selected list, if that table is part of
the join query

The table corresponding to an entity usage will be automatically
added to the join query, if an applied view criteria or a sort criteria
clause refers an attribute from this entity usage

Optionally generating Java classes for a
view object

When you build a view object, JDeveloper generates a view object XML file to store
the metadata, by default. This metadata will be used at runtime to instantiate the
view object instances, using default framework classes. If you want to customize the
default behavior of framework classes or add custom business logic, you will need
to generate Java classes and override default callback methods, as we did for entity
objects in the previous chapter.

To generate Java classes for a view object, double-click on the view object to display
the overview editor. In the overview editor, go to the Java tab and click on Edit Java
Options icon. In the Select Java Options dialog, select the types of Java classes that

you want to generate.

* View object class: This class is customized to add business methods and to
override the default lifecycle of view object instances. For example, to build
programmatic a view object, you must generate a view object class for the
desired view object and override the lifecycle call back methods to hook the
custom logic.

[116]

Chapter 4

View row class: This class represents a row in the result collection in a
view object. If you want to modify the default read and write operations
for specific attributes, this is the class you need to extend. For example,
if you have any transient attributes defined in the view object whose
value is derived from other attributes in the row, you can override the
get<AttributeName> method and add the logic over there.

View object definition class: This class manages the view definition
implementation and controls view row creations. You may rarely customize
this class to override the properties at runtime. For example, if you want

to modify the properties or attributes of a view object at runtime, you can
override the resolveDefoObject () method in the oracle.jbo.server.
ViewDefImpl class and add custom logic for altering the definition before
returning to the caller.

Service data object (SDO) class: This is useful if you want to expose the
view object as a web service abstracting the data of the view object. This
is typically used in service-oriented architecture when you need to expose
functionalities of a view object as web service. The SDO standardizes the
way that data structures are passed between Java and XML.

A detailed discussion on service-enabling of ADF Business Components
falls outside the scope of this book. To learn more on generating web
service interfaces for the application module, refer to the topic Integrating
* Service-Enabled Application Modules in Oracle Fusion Middleware Fusion
% Developer's Guide for Oracle Application Development Framework. To access
’ the documentation go to http: //www.oracle.com/technetwork/
developer-tools/jdev/documentation/index.html and
navigate to Oracle JDeveloper and ADF Documentation Library |
Fusion Developer's Guide. Use the search option to find specific topics.

Commonly used properties of view objects

The vast majority of the attribute properties that we see for a view object are
inherited from the underlying entity object or from the database dictionary. When
you generate a view object from an entity object, the view object is copied and added
to the view definition XML file.

In this section, we will skip those properties, which we have discussed for entity
objects, to avoid repetition and to make our discussions more productive. However,
we will discuss some properties, which need special attention in the context of
view objects.

[117]

Introducing View Object

To see a detailed discussion on the attribute properties of a view object

which are copied from the underlying entity object, refer back to the
= Commonly used properties of an entity attribute section in Chapter 3,

Introducing Entity Object.

Annotate attributes using Ul hints

View object supports control hints on attributes that describe how the attribute needs
to be displayed in the UL UI hints are typically used for annotating attributes, which
can be leveraged in building a model-driven Ul Here are the details of its usage:

* IDE uses Ul hints to infer the component type for each attribute during
design time. For example, when you drop a collection onto a page, IDE uses
UI hints to come up with appropriate component tags for each attribute.

* ADF framework automatically makes use of the UI hints added to an
attribute while rendering it using dynamic model-driven Ul components
such as query, dynamic form, dynamic table, and model LOV. To use
UI hints with static Ul components such as input fields or actionable
components, you should bind the property of the Ul component with the
appropriate Ul hints through expression language (EL). The following Java
Server Faces (JSF) code snippet illustrates how EL expressions help you to
bind component properties, such as label, columns, maximum length, and
so on, with the appropriate UI hints defined for the underlying attribute in
a view object:

<af:inputText value="#{bindings.DepartmentId.inputValue}"
label="#{bindings.DeptVO.hints.DepartmentId.label}"
required="#{bindings.DeptVO.hints.
DepartmentId.mandatory}"
columns="#{bindings.DeptVO.hints.
DepartmentId.displayWidth}"
maximumLength="#{bindings.DeptV0.hints.
DepartmentId.precision}
shortDesc="#{bindings.DeptVO.hints.
DepartmentId.tooltip}"
id="itl">
<af:convertNumber groupingUsed="false"
pattern="#{bindings.DeptV0.hints.
DepartmentId.format}"/>

</af:inputText>

To specify UI hints for an attribute, open the view object in the overview editor.
In the Attributes page, select the desired attribute, click on the UI Hints tab, and
specify the hints as appropriate.

[118]

Chapter 4

Let us take a quick look at the commonly used UI hints for an attribute:

Display Hint: This hint decides whether the attribute will be displayed or
not at runtime.

Label: This stores the label for the attribute.
Tooltip: This stores the tooltip for the attribute.

Format Type and Format: Format Type specifies the formatter to be used for
the attribute, such as date, number, and so on, depending upon the datatype.
Format specifies the format mask to be used for the attribute when displayed
in UL

Control Type: This field stores the control type for the attribute. This is used
by the IDE to generate an appropriate component tag for the attributes when
you design the page by dropping the collection. ADF runtime also uses this
property to decide the control type while rendering the collection using
dynamic model-driven UI components.

Display Width: This specifies the number of characters shown on the
UI control.

Display Height: This specifies the number of character rows of the UI control
that displays the attribute.

Category and Field Order: Category is used to categorize (group) the
attributes when displayed in dynamic model-driven Ul components such
as query, quick query, and dynamic form. Field Order specifies the order in
which attributes are displayed in a category at runtime.

Auto Submit: This automatically submits the value to the server on tabbing
out from UI control.

[We will cover more detailed examples on Ul hints in Chapter 8, Building]
L

Data Bound Web User Interfaces.

Adding business rules

Generally, you may not define business rules on a view object, rather you may use an
entity object for holding all business rules. Now, you may ask what if a view object
contains attributes that are not backed up by the entity object. This section provides a
solution for such use cases.

[119]

Introducing View Object

View objects can also hold transient attributes as entity objects. ADF allows you

to set business rules on updatable transient attributes in a view object. To define

a validation on a transient attribute in a view object, select the view object in the
overview editor and then select the transient attribute on which you want to define
validation. Right-click on the desired transient attribute and then select New
Validator to open up the dialog for adding a validation rule. The usage of the Add
Validaton Rule wizard dialog is the same as that that we discussed in Chapter 3,
Introducing Entity Object in the section entitled Adding validation.

In real-life applications, you may rarely define updatable transient attributes on a
view object. If you find a need to define updatable transient attributes on a view
object, check the feasibility of defining it on the underlying entity object, and then
use it from the view object as appropriate. This may help you to post the modified
value to the appropriate datasource at the right time during the transaction commit
cycle. Remember that it is the entity object that participates in the transaction post
cycle, not the view object.

Working with view objects

We learned the basic lessons on view objects and their declarative configuration
options in the last section. In fact, a view object offers a lot more. In the coming
sections, we will explore the common utility services offered by a view object
and common usage patterns along with a lot of code samples.

List of values

The list of values (LOV) component will allow a business user to select a value for
a field on UI from a pre-populated list. Enabling LOV for a view object attribute is
easy and straightforward.

Configuring the list of values

To define the LOV, decide the list datasource first. For example, in a classic
Department-Employee example, if you want to display the departments' list for the
department attribute in an employee row, the Department table is the datasource.
As the ADF Business Components uses the view object to query the datasource, we
will be defining (or choosing an existing) view object to query the datasource for the
LOV as the first step. Once the datasource view object is in place, you can configure
the LOV as discussed here:

[120]

Chapter 4

1. To configure LOV, double-click on the view object in the model project that
contains the attribute you wish to enable for LOV. In the overview editor,
select the Attributes tab and then select the attribute that you wish to
configure for LOV. Select the List of Values tab and click on the green
plus icon to add the list of values to display in the Create List of Values
dialog window.

2. The next step is to define a mechanism to access the LOV datasource view
object from the base view where you define the LOV. ADF view objects use
view accessor definition for accessing other view objects which are found in
the projects class path.

3. In the Create List of Values dialog window, enter the LOV name and
then click on the green plus icon to create a new view accessor for the list
datasource view object. In the Create View Accessor window, select the view
object that will act as the source for the LOV and shuttle that to the View
Accessor list, and optionally modify Accessor Name. Click on OK to save
the view accessor definition. If you have already generated a view accessor
for the target view object, you can skip the view accessor definition task and
instead continue with the next step.

4. In the Create List of Values dialog window, expand List Data Source and
select the view accessor that you have created. Then select List Attribute
(list return value) from the LOV data source view object, which will be
mapped to the LOV-enabled attribute on the base view object. If the attribute
names are the same in the LOV source view object and base view object, the
editor creates a default mapping between them. You can add more return
values mapping between the attributes in the base view object and the LOV
datasource view object by clicking on the Create return attribute map icon
displayed in the List Return Values table.

5. To choose the LOV display type, click on the UI Hints tab and then select
Default List Type. You can optionally configure other properties, which
affect the LOV display at runtime. Click on OK to save the changes.

More advanced topics on LOVs such as building cascading LOVs, LOV

switching, and programmatic examples will be discussed in Chapter 5,
’ Advanced Concepts on Entity Objects and View Objects.

[121]

Introducing View Object

Linking two view objects

You can link one view object to another view object to form a master details
hierarchy of any complexity. To defined a view link, follow these steps:

1. Right-click on the project in which you want to create the view object and
choose New. In New Gallery, expand Business Tier, select ADF Business
Components, and then select View Link.

2. Inthe Create View Link dialog window, enter the package and view link
name on the Name page, and click on Next. On the View Object page, select
the cardinality for the relationship, and then add the source and destination
view object attributes, which form the relation. If the source and destination
view objects are based on entity objects and there exists an association
between the entity objects, you can define view links by choosing the existing
associations.

3. Click on Next; the View Link Properties page will be displayed, where
you can decide whether the view link needs to be unidirectional or
bidirectional. If you select the checkbox to expose the accessor in source and
destination view object, the view link becomes bidirectional. By default it
is unidirectional. This allows the current row of the source to access related
rows in the destination view object. Optionally, you can override the accessor
names in the view objects' implementation classes. The accessor attributes let
you programmatically access the destination view object. Click on Next and
then click on Finish to end the wizard.

Where clause and Reverse Where clause

In general, when you access a child view object by traversing the child view accessor
attribute defined in the parent view, the framework will append the WHERE clause

to the query in the child view object with attributes derived from the view link
definition to identify the child rows. If you want to override the default WHERE clause
generated by the view link definition, while traversing through accessor attributes,
you can make use of the Where and Reverse Where options available on the view
link. The where attribute is a custom WHERE clause that will be used as part of the
query that is executed when navigating from source to destination. For example,

if you try to access Employee details by using the Department-Employee view

link, the query becomes:

SELECT ... FROM EMPLOYEES EmployeeEO WHERE (Where)

[122]

Chapter 4

The whereReverse attribute is a custom WHERE clause that will be used as part
of the query that is executed when navigating from destination to source, so the
query becomes:

SELECT ... FROM DEPARTMENTS DepartmentEO WHERE (Reverse Where)

Inheritance hierarchies in view objects

The ADF Business Components framework supports inheritance in view objects
irrespective of the underlying datasource. However, there are subtle differences
between inheritances in view objects based on polymorphic entity usages and the
rest. This is discussed in the following section.

Inheritance hierarchies in view objects with non-
polymorphic entity usage

When you create a view object by using the editor, the Name page in the Create
View Object window will allow you to extend the new view object from an existing
view object. If the view objects that you have selected as a base for extending do

not contain any polymorphic entity usage, the extended view object will have the
following properties:

* The new extended view object will inherit all the metadata definitions
from the base view object, which includes attribute definitions, query,
view criteria, bind variables, view accessor, and view link definitions.

* The extended view object can optionally override the query and bind
variable values, and add extra bind variables, view criteria, and view links.

* Opverriding the attributes and methods from the Java implementations of an
extended view object follows the rules in Java language.

Inheritance hierarchies in view objects with
polymorphic entity usage

If the base view object that you are going to choose is based on polymorphic

entity usages, JDeveloper will allow you to select subtypes of entities from the

entity hierarchy in the entity usage mapping. A polymorphic view object refers to

a view object, which has the ability to process properties and functions differently by
dynamically linking the matching entity object usages in the hierarchy based on the
polymorphic discriminator value. The polymorphic discriminator value set for the
entities will be used to qualify each row retrieved from the datasource for the final
row set.

[123]

Introducing View Object

Step-by-step instructions for defining view objects with polymorphic
entity usage is discussed in Oracle Fusion Middleware Fusion Developer's
Guide under the topic How to Create a View Object with a Polymorphic
Entity Usage, which is available as part of the Oracle JDeveloper and ADF
% Documentation Library. To access the documentation go to http://

T~ www.oracle.com/technetwork/developer-tools/jdev/
documentation/index.html, choose Oracle JDeveloper and ADF
Documentation Library | Fusion Developer's Guide. Use the search
option to find specific topics.

When you use a polymorphic view object to create a row, the framework will
delegate the call to create a row for the corresponding entity usage, which is
evaluated based on the value set for the polymorphic discriminator attribute. For
example, consider employees in a marketing department with two subgroups —
marketing executives and sales. Let us see how a polymorphic view object can be
used to implement this employee inheritance hierarchy.

We will start with polymorphic entity objects. In this example,
MarketingEmployeeGenericEO is a base entity with Department1d as the
polymorphic discriminator attribute. Entity objects ExecutiveEmployeeEO
and SalesEmployeeEO are subtypes in the inheritance hierarchy:

® MarketingEmployeeGenericEO (DepartmentId=20)

® ExecutiveEmployeeExEO (DepartmentId=80)

® SalesEmployeeEXEO (DepartmentId=90)

The following diagram depicts the entity objects hierarchy and the view objects:

View Objects Entity Objects
£ MarketingEmployeeGenericVO @ MarketingEmployeeGenericEO
Employeeld : Integer Employeeld : Integer
FirstName : String FirstName : String
LastName : String LastName : String
Email : String Email : String
PhoneNumber : String PhoneNumber : String
HireDate : Timestamp

MarketingEmployeeGenericEO .
Jobld : String

Managerld : Integer
Department : Integer

& MarketingEmployeeListVO @ ExecutiveEmployeeEXEO 3 SalesEmployeeEXEO
Salary : BigDecimal Departmentld : Integer
CommissionPct : BigDecimal
Departmentld : Integer

[124]

Chapter 4

MarketingEmployeeGenericVo is based on MarketingEmployeeGenericEO.

The view object MarketingEmployeeListVO is a polymorphic view object, which

is extended from MarketingEmployeeGenericvo. The ExecutiveEmployeeEXEO
and SalesEmployeeExEO entity objects are selected as subtypes in the entity usage
section for MarketingEmployeeListVO. A polymorphic MarketingEmployeeListVO
means that it will pick up a different entity usage instance to perform the operation
based on the context set by the discriminator attribute value. Let us take a look at

an example.

If you call createAndInitRow () on MarketingEmployeeListVO with
DepartmentId=90, as shown in the following example, the framework will
resolve the underlying entity object as SalesEmployeeEO by using the
discriminator attribute value and will invoke the create (AttributeList
nameValuePair) method on it.

//In application module implementation class
public void createOnPolymorphicVoO () {
Row row=null;
NameValuePairs nvp=null;
//Get the polymorphic VO
MarketingEmployeelListVOImpl vo =
(MarketingEmployeeListVOImpl)
getMarketingEmployeeList () ; nvp = new NameValuePairs() ;
nvp.setAttribute ("DepartmentId", "90");
//VO delegates the createAndInitRow() call to
//SalesEmployeeEXEO as DepartmentId=90
row=vo.createAndInitRow (nvp) ;
nvp = new NameValuePairs() ;
nvp.setAttribute ("DepartmentId", "80");
//Vo delgates the createAndInitRow() call to
//ExecutiveEmployeeEXEO as DepartmentId=80
row=vo.createAndInitRow (nvp) ;

Querying the datasource by using a view
object

A typical enterprise application may need to query the datasource with various
search conditions independent of the underlying storage medium. Sometimes
applications may even need to filter the rows in the memory. An ADF view object
has declarative support for defining the query with various search conditions and
search modes. In this section, we will take a quick tour on the features provided by
the view object to query the datasource and for managing the result set along with
code samples.

[125]

Introducing View Object

Specifying the query mode for a view object

Let us start our tour with discussing various query modes supported by view objects.
A view object's query mode selects the datasource that will be used to populate the
row set. The query modes for a view object are as follows:

* Scan database tables: In this mode, the query is fired against the database.
This is the default query mode for a view object.

* Scan view rows: In this mode, the view object queries the rows that are
already present in the query collection. In other words, when you use the
scan view rows mode, you need to have first queried the rows into the view
row cache (query collection).

* Scan entity cache: This mode is applicable only to entity-based view objects.
In this mode, the rows in the entity cache are queried to build the row set.
Unlike scan view rows mode, this mode scans through the entity cache. Note
that all the view objects that are backed up by the same entity objects end up
using the same entity cache in a transaction. This implies that the scan entity
cache mode scans through all the rows that were queried into the entity
cache by multiple view objects.

The following example illustrates the usage of query mode in a typical business logic
implementation. This example first fires the query against the database to read all
employee rows, and then reads all rows returned by the query. Then to further refine
the result, the program changes the query mode to entity cache and fires the query
against the entity cache to find out employee rows whose last name starts with the
letter P. The query mode that you set on a view object is sticky and will remain until
you set a new or original query mode.

// In ApplicationModuleImpl

public void changingQueryModeDynamically () {
//Possible view object modes are
//1. ViewObject.QUERY MODE SCAN DATABASE TABLES
//2. ViewObject.QUERY MODE SCAN VIEW ROWS
//3. ViewObject.QUERY MODE SCAN ENTITY ROWS

//Get the view object

ViewObject vo = findViewObject ("EmployeeDetails") ;
//Fires query against database (default query mode)
vo.executeQuery () ;

//Rest of the business logic goes here..

//This e.g just prints all rows

//In real life application, you can process the rows here
while (vo.hasNext ()) {

[126]

Chapter 4

}

Row r = vo.next () ;

String email = (String)r.getAttribute ("Email") ;

System.out.println ("Employee with email -" + email);
}
//Now find all employees whose last name start with 'P'
//This is done against the rows in the cache(no DB hit)
vo.setQueryMode (ViewObject .QUERY MODE SCAN ENTITY ROWS) ;
ViewCriteria vc = vo.createViewCriteria() ;
ViewCriteriaRow vcrl = vc.createViewCriteriaRow() ;
verl.setAttribute ("LastName", "LIKE 'P%'");
vc.setCriteriaMode (ViewCriteria.CRITERIA MODE CACHE) ;
ve.add (verl) ;
vo.applyViewCriteria (vc) ;
vo.executeQuery () ;

You can either use the query modes individually on a view object or combine
multiple query modes, using Java logical operator (mode1l | mode2). Here is
an example:

// Defined In custom ApplicationModuleImpl
public void gqueryUsingMulitpleQueryModes () {

}

//Find the view object
ViewObject employeeVO = findViewObject ("EmployeeDetails") ;
//Combine both database mode and entity cache query mode
employeeVO. setQueryMode (
ViewObject.QUERY MODE SCAN DATABASE TABLES |
ViewObject.QUERY MODE SCAN ENTITY ROWS) ;
//Execute query
employeeVO.executeQuery () ;
// Business logic to manipulate row goes here

Runtime uses the following execution order when the view object has multiple query
modes set:

1. Scan through view rows (if specified).

2. Scan through entity cache (if specified).

3. Scan through database tables (if specified).

[127]

Introducing View Object

You cannot use expert mode view objects in the in-memory query mode
such as scan the view rows or scan the entity cache. This is because the
framework does not replicate all the search capabilities from the database
% in the middle tier, which is not efficient as well. However, the framework
= supports the in-memory filtering if the view object is based on multiple
entity usages that are connected through association or if the search
condition is set through the in-memory mode view criteria.

Adding WHERE clause to a view object

You can restrict the number of records returned by a view object by appending
search conditions to the query. This can be done either at design time through a
static WHERE clause or by programmatically appending a condition at runtime.

Appending the WHERE clause at design time

To append the WHERE clause to a query in a view object, follow these steps:

1. Double-click on the view object to display the overview editor. Click on the
Query tab in the overview editor and click on the Edit SQL Query icon to
display the Edit Query dialog window.

2. In the Edit Query window, enter the appropriate WHERE clause. If the
WHERE clause contains parameters whose values may change each time,
it is recommended to introduce bind variables in the SQL query.

3. To define bind variables, select the Bind Variables node in the Edit Query
window and click on New. Modify the default variable name and the type
that is set by the editor to reflect the bind variable name. Also modify the
type used in the query. Optionally, you can set the default value in the
Value field, which can be either a literal or an expression.

Appending the WHERE clause at runtime

To append the WHERE clause at runtime, call setWhereClause () on the view object.
If the WHERE clause contains bind variables that have been added at runtime, call
defineNamedWhereClauseParam to define the same. Here is an example:

//This is in application module implementation class

public void executeEmployeeDetailsVOWithBindvar () {
ViewObject vo = findViewObject ("EmployeeDetails") ;
//Append WHERE cluase
vo.setWhereClause ("FirstName = :bindVarFirstName") ;

[128]

Chapter 4

//Define the bind variable

vo.defineNamedWhereClauseParam("bindvVarFirstName", null,
null) ;

//Set the bind param value

vo.setNamedWhereClauseParam ("bindVarFirstName", "Tom") ;

vo.executeQuery () ;

Using bind variables

Bind variables are variables that are used in place of dynamic input values in a
SQL statement. This has the effect of sending exactly the same SQL statement to the
database every time the query is executed. JDeveloper allows you to define bind
variables through multiple editor windows to ease your job. If you edit an existing
query or view criteria to add a bind variable, you can see an option to define bind
variables in these editor windows. The Query tab in the overview editor of a view
object also has support for defining bind variables.

If the bind variable appears in the query at design time, while
defining the bind variable you will need to mark it as Required.
An example may be a static WHERE clause with bind variables
added to the query at design time.
S

If the bind variable appears in the query conditionally, the
corresponding bind variables are supposed to be marked as
optional (uncheck the Required flag). An example is bind
variables used in a view criteria.

Programmatically specifying the value for bind variables

There are multiple ways to supply bind variable values for a view object. You must
know what means what when you build business components. Here are the details:

* Using setNamedWhereClauseParam() on the view object: This method sets
the value on the default row set of the view object instance. In other words,
this does not affect the secondary row sets that you or the system generates.
Here is an example:

//In application module implementation class

public Row findEmployeeForEmpId(Integer empld) {
ViewObject employeeVO = findViewObject ("Employees") ;
//Define WHERE clause
String whereClause = "EmployeeEO.EMPLOYEE ID = :empId";
employeeVO.setWhereClause (whereClause) ;

[129]

Introducing View Object

employeeVO.setNamedWhereClauseParam("empId", empId) ;
employeeVO.executeQuery () ;
return employeeVO.first () ;

}

* Using setVariableValue () on VariableValueManager: The variable
value manager manages named variables and their values for the view
object instance. If the bind variable values have not been set on the
bind variables by explicitly calling setNamedWhereClauseParam(),
the bind variable value set may reflect across all row sets by calling
setVariableValue () on VariableValueManager. This is because the call
to setNamedWhereClauseParam () on a row set takes precedence over the
variable value manager's copy of bind variable value. Here is an example:

//In application module implementation class

public void findEmployeeForEmplId(Integer empld) {
ViewObject employeeVO =findViewObject ("Employees") ;
VariableValueManager vm =
employeeVO.ensureVariableManager () ;
vm.setVariableValue ("empId", empId) ;
employeeVO.executeQuery () ;

}

* Using setWhereClauseParam() on the view object: You can use this
method for view objects with the binding style of Oracle Positional or JDBC
Positional. This is typically used when you work with non-Oracle databases
where you cannot use named bind variables.

//In application module implementation class

public Row findEmployeeForEmpId(Integer empld) {

//Define WHERE clause with JDB style bind var :NNN
String whereClause = "EmployeeEO.EMPLOYEE ID = :1";
ViewObject employeeVO =findViewObject ("Employees") ;
employeeVO.setWhereClause (whereClause) ;
employeeVO.setWhereClauseParam (1, empId) ;
employeeVO.executeQuery () ;

return employeeVO.first () ;

[130]

Chapter 4

Changing the query of a view object at runtime

A view object will allow you to modify the design-time SQL query at runtime. If you
are modifying the query of the view object, which is bound to some non-dynamic

Ul elements on a web page, make sure the new query that you set for the view
object returns the same attribute definitions as in the original case. This feature is
useful when you need to use the same Ul to display data from different datasources
(database tables) depending on the context of the usage. Before you alter the query
dynamically, make sure you close all existing row sets that are using the existing
query. The following code snippet illustrates how you can modify the query on

a view at runtime:

/**
* This is a custom method defined in an application module.
* It sets the query on a view object at runtime
*/
public void modifyQueryDynamically(ViewObjectImpl voImpl, String
newQueryString)
// FULLSQL MODE_ AUGMENTATION flag that tells framework that
// you want to keep the query set through setQuery() for
// the rest of the execution using this view object
voImpl.setFullSglMode (voImpl.FULLSQL MODE AUGMENTATION) ;
closeAllRowsets (voImpl) ;
//clear the previous WHERE clause and parameters
voImpl.setWhereClause (null) ;
voImpl.setWhereClauseParams (null) ;
//Query can be set fully in expert mode
voImpl.setQuery (newQueryString) ;

/**
* Close all row set when query changes
* to avoid the orphan Rowset
*/
public void closeAllRowsets (ViewObject vo) ({
RowSet [] rowSets = vo.getRowSets() ;

if (rowSets == null || rowSets.length == 0) {
return;

}

for (RowSet rowSet : rowSets) {
rowSet .closeRowSet () ;

[131]

Introducing View Object

Programmatically sorting view object rows

To sort the rows in a view object at runtime, you can use the following APIs
depending upon whether the attribute is a transient type or persistent:

e Use the setSortBy () method to sort transient attributes, which will take
attribute names with the desc or asc clause. Next time when the client
executes the view object, the framework sorts the columns in memory. This is
done in memory and has a performance impact for a large number of rows.
So, avoid using it for persistent attributes. Here is an example:

//In a method defined in application module implementation
//class

ViewObject vo = findViewObject ("EmployeeDetails") ;
//FullName is a transient attribute

vo.setSortBy ("FullName desc") ;

vo.executeQuery () ;

e Use the setOrderByClause () method to sort columns from the database
table (persistent attributes). Next time when the client executes a view object,
the view object translates this sorting clause into an appropriate format to use
it for ordering the rows depending on the SQL mode.

//In a method defined in application module implementation
//class

ViewObject vo = findViewObject ("EmployeeDetails") ;
vo.setOrderByClause ("EmployeeEO.FIRST NAME ASC") ;
vo.executeQuery () ;

In-memory filtering of row sets

So far in our discussion of view objects, we have been talking about different
approaches for executing a query. Most of our code samples use a database as a
datasource. This may not always be the case. A rich enterprise application should
have the infrastructure for supporting the query on unposted data as well. This is
highly desirable when you build a rich internet application where a specific business
transaction may span across multiple requests. An ADF view object has facilities to
filter data in memory, as discussed in the following sections.

In-memory filtering with RowMatch

The oracle.jbo.RowMatch class will help you to filter the rows in a view object
from in-memory. The RowMatch class can be used either standalone or along with
a view object to filter the rows.

[132]

Chapter 4

The following example illustrates the standalone usage of RowMatch to check if an
individual row qualifies as a specific condition:

//In a method defined in application module implementation
//class

//Get row to be checked from employee view object
ViewObject vo = findViewObject ("EmployeeDetails") ;

Row row = vo.getCurrentRow() ;
//Set the condition for in memory filtering
RowMatch rm = new RowMatch ("FirstName = 'William'") ;

// alternatively use rm.setWhereClause(condition) ;
if (rm.rowQualifies (row)) {
//Row exists with William as first name

}

The following example illustrates the usage of RowMatch to filter a row set in a
view object:

//In a method defined in application module implementation
//class

//Get employee view object

ViewObject vo = findViewObject ("EmployeeDetails") ;
//Set the condition for in memory filtering
RowMatch rm = new RowMatch("FirstName like 'Jd%'");
vo.setRowMatch (rm) ;

vo.executeQuery () ;

You can also use bind variables in the expression set for RowMatch. When RowMatch
is used for a view object, the view object's variable manager will supply the bind
variable value.

//In a method defined in application module implementation
//class

//Get employee view object

ViewObject vo = findViewObject ("EmployeeDetails") ;

RowMatch rm = new RowMatch ("LastName = :bvLastName") ;
vo.getVariableManager () .setVariableValue ("bvLastName", "Grant");

[133]

Introducing View Object

If RowMatch is being used standalone to test an individual row, the owner of the row
will manage the bind variable value. Here is an example:

//In a method defined in application module implementation
//class

//Get row to be checked from employee view object

ViewObject vo = findViewObject ("EmployeeDetails") ;

Row row = vo.getCurrentRow () ;

RowMatch rm = new RowMatch ("FirstName = :bvFirstName") ;

ViewObject ownerVO=(ViewObject)row.getStructureDef () ;

ownerVO.getVariableManager () .setVariableValue
("bvFirstName", "William") ;

Row row=getRow

if (rm.rowQualifies (row))

//Row exists with William as last name

}

You can use basic SQL functions while coding for in-memory filtering, using
RowMatch. It supports the following SQL functions:

SQL function Operation

UPPER Uppercases the string

TO_CHAR Converts a number or date to a string
TO_DATE Converts a string to a date
TO_TIMESTAMP Converts a string to a timestamp

ABS Returns absolute value

SIGN If the number is positive returns +1

If the number is negative returns -1
else returns 0

DECODE Provides the functionality of the IF-
THEN-ELSE statement

MOD Returns the remainder of "m" divided
by Hnll

Here is an example for RowMatch with SQL function:

RowMatch rm = new RowMatch ("UPPER (FirstName) = UPPER(:bvFirstName)") ;

[134]

Chapter 4

The following are the SQL operators supported by in-memory filtering with RowMatch:

Operator Operations
=, < >,<,<=,>,>=, LIKE, and BETWEEN Comparison
NOT Negation
AND Conjunction
OR Dejection

Don't use RowMatch if you have the option to filter the values at
database level. In-memory filtering is much slower than filtering
done at the database layer.

In-memory filtering by overriding rowQualifies() in
ViewObjectimpl

If your view object needs to proactively perform in-memory filtering when rows are
read from datasource or cache, you can override the rowQualifies (ViewRowImpl
vr) method on viewObjectImpl. This method is invoked on new view rows as
well as view rows coming from the query to see if the view row should be added to
the query collection.

The following example uses this feature to implement soft deletion. When a row is
deleted from the UI, the program sets StatusFlag to DELETE, without removing the
row. To hide the row from appearing in the collection used in the U], this example
overrides rowQualifies (). This overridden method disqualifies all the rows with
StatusFlag set to DELETE from adding into the query collection.

//In view object implementation
@Override
protected boolean rowQualifies(ViewRowImpl vr) {
//Omit the rows from row set whose StatusFlag= 'DELETE'
Object attrValue =vr.getAttribute ("StatusFlag") ;
if (attrValue != null) {
if ("DELETE".equals (attrValue))
return false;
else
return true;

}

return super.rowQualifies (vr);

[135]

Introducing View Object

You can also use view criteria with the in-memory query execution mode to perform
in-memory filtering on row sets. This is discussed in the following section.

View criteria

The view criteria definition contains the filter information for the rows of a view
object. It comprises view criteria rows and view criteria items, which will be used to
form the WHERE clause at runtime. This is useful if you want to optionally filter the
rows at runtime against the database, in-memory, or both.

Here are the steps to define the view criteria on a view object:

1. Click on the Query tab in the overview editor and then expand the View
Criteria section. Click on the green plus icon to create new view criteria.

2. Inthe Create View Criteria dialog window, enter View Criteria Name,
select Query Execution Mode, and then add View Criteria Items. Each view
criteria item contains Attribute, Operator, Operand Type, and optionally
default operand value. You can optionally specify the required field
validation too.

3. The UI Hints tab on the Create View Criteria dialog window will help you
to set the control hints for the criteria item. These control hints will be used
by the UI components, such as af : query and af : quickQuery, to render their
fields at runtime.

To learn more about the options for creating view criteria, refer to Chapter
5, Defining SQL Queries Using View Objects in Oracle Fusion Middleware
. Fusion Developer's Guide for Oracle Application Development Framework.
% To access the documentation go to http://www.oracle.com/

L technetwork/developer-tools/jdev/documentation/index.
html, choose Oracle JDeveloper, and navigate to ADF Documentation
Library | Fusion Developer's Guide. Use the search option to find
specific topics.

Architecture of view criteria

A view criteria can include multiple view criteria or view criteria rows linked by
various criteria conjunction types such as AND, OR, and UNION. Each view criteria
row can optionally include multiple view criteria items.

[136]

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

Chapter 4

ViewCriteria . ViewCriteriaRow
1
1 * 1
*
ViewCriterialtem

The query execution mode that you set for the view criteria decides the source to
read rows:

* Database: In this mode view criteria is used for database query. This is
the default mode. You can use the ViewCriteria.CRITERIA MODE_ QUERY
constant to refer this mode programmatically.

* In-memory: In this mode, view criteria is used for in-memory filtering. You
can use the ViewCriteria.CRITERIA MODE_ CACHE constant to refer this
mode programmatically.

* Both (database and in-memory): In this mode, view criteria is used for a
database query first and then for in-memory row filtering. You can combine
the viewCriteria.CRITERIA MODE QUERY and ViewCriteria.CRITERIA
MODE_CACHE constants in order to refer this mode programmatically:

ViewCriteria.CRITERTA MODE_QUERY | ViewCriteria.CRITERIA MODE_
CACHE

View objects even help you with APIs to build view criteria dynamically. Here is a
simple example:

//In application module implementation class

public void executeEmployeeVOWithDynamicVC () {
//Get the desired view object
ViewObject vo = findViewObject ("EmployeeDetails") ;
//Build View Criteria first
ViewCriteria vc = vo.createViewCriteria() ;
//Create View Criteria Row
ViewCriteriaRow vecr = vc.createViewCriteriaRow() ;
//Set the QBE

[137]

Introducing View Object

vcr.setAttribute ("FirstName", "LIKE 'J%$'") ;

//Optionally override the default criteria mode-Database

vc.setCriteriaMode (ViewCriteria.CRITERIA MODE_ QUERY |
ViewCriteria.CRITERIA MODE_ CACHE) ;

//Add View Criteria Row

vec.add (ver) ;

//Execute Query, Framework will generate a WHERE clause

//for the above VC as

//SELECT .. FROM .. WHERE EmployeeEO.LAST NAME LIKE

//:vc_temp 1

vo.executeQuery () ;

1
‘Q View criteria with in-memory execution mode supports all the SQL

operators discussed under RowMatch.

You can even use bind variables in view criteria items while creating view criteria
through code. When you use a bind variable, you pass a strong message about the
exact parameter type to framework. This is very essential when the native SQL needs
to offer special handling for datatypes such as date and time and numeric values.
The bind variable API also gives you an option to set attribute hints, which will be
consumed by query components to render the corresponding field on Ul Here is an
example for creating view criteria with a bind variable:

/**
* This method creates view criteria programmatically and
* returns it to the caller.
* This is defined inside EmployeeViewObjectImpl.
*/
public ViewCriteria CreateVCForEmpName(){
//Get the VariableValueManager who is responsible for
//managing bind vairbales
VariableValueManager vvm =ensureVariableManager () ;
//Create View Criteria
ViewCriteria vc =createViewCriterial() ;
ViewCriteriaRow vecr = vc.createViewCriteriaRow() ;
//Create View Criteria Item and set operator
ViewCriterialtem veci = vcr.ensureCriterialtem("FirstName") ;
veci.setOperator (JboCompOper.OPER_LIKE) ;
vci.setRequired (ViewCriteriaItem.VCITEM REQUIRED) ;
//Define bind variable and init properties
VariableImpl fstNameVar = (VariableImpl)vvm.
addvVariable ("dynamicBindVarAttribute") ;

[138]

Chapter 4

fstNameVar.setJavaType (String.class) ;
fstNameVar.setMandatory (true) ;
fstNameVar.setUpdateableFlag (Variable .UPDATEABLE) ;
fstNameVar.setVariableKind (

Variable.VAR KIND VIEW CRITERIA PARAM) ;
fstNameVar.setProperty (

AttributeHints .ATTRIBUTE DISPLAY HINT,

AttributeHints.ATTRIBUTE DISPLAY HINT HIDE) ;
//Add bind variable to VC Item as value
vci.setValue (0, ":dynamicBindVarAttribute");
vcil.setIsBindVarvValue (0, true) ;
//Initialize bind variable value
vvm.setVariableValue (fstNameVar, "A%");
//Insert View Criteria Row to VC
vc.insertRow (ver) ;
return vc;

}

Once you have applied the view criteria to a view object, it will be stuck there till you
remove the same from the applied list. To remove an applied view criteria, use the
API shown in the following example:

//In application module implementation class

public void unApplyVC(String viewCriteriaCNameToBeRemoved) {
//Get Employee view object
ViewObjectImpl vo = (ViewObjectImpl)findvViewObject
("EmployeeDetails") ;
vo.removeApplyViewCriteriaName
(viewCriteriaCNameToBeRemoved) ;

}

You can alter the existing view criteria definitions dynamically through code as
shown in the following example. If you want to persist the changes made on a

view criteria, call saveState () on the ViewCriteria object. The following example
updates an existing view criteria to add a new condition, and persists all the changes
by calling saveState () on view criteria:

//In application module implementation class

public void alterVCAndSaveState () {
//Get Employee view object
ViewObject vo = findViewObject ("EmployeeDetails") ;
ViewCriteriaManager vcm = vo.getViewCriteriaManager () ;
//Get an existing VC

[139]

Introducing View Object

ViewCriteria vc = vcm.getViewCriteria
("EmployeeDetailsvC") ;

//Add new condition to VC

ViewCriteriaRow vcr = vc.createViewCriteriaRow () ;

vcr.setAttribute ("EmployeeId", "IN (1000,2000)") ;

vec.add (ver) ;

//Persist the changes

vc.saveState () ;

}

When multiple viewCriteriaRow objects are added to ViewCriteria, you can
specify whether the conditions generated by viewCriteriaRow should be combined
using the logical operator AND or or with the existing conditions (WHERE clause).

You can do this through the setConjunction () method. You can use conjunction
constants from ViewCriteriaRow to specify the desired logical operator. Multiple
conjunction constants are combined through bit-wise Or operator. The following
example illustrates how to combine multiple view criteria rows to achieve a WHERE
clause as WHERE (((EmployeeEO.JOB_ID LIKE :vc_temp 1)) AND (NOT (
(EmployeeEO.DEPARTMENT ID = :vc_temp 2)))):

// Show employees with JobId=IT PROG and DepartmentId <> 60

public void applyVCRowWithConjunction () {
//Get employee view object
ViewObject vo = findViewObject ("EmployeeDetails") ;

ViewCriteria vc = vo.createViewCriteria() ;
ViewCriteriaRow vcRowl = vc.createViewCriteriaRow() ;
vcRowl.setAttribute ("JobId", " IT PROG") ;
vc.addElement (vcRowl) ;

ViewCriteriaRow vcRow2 = vc.createViewCriteriaRow() ;
vcRow2.setAttribute ("DepartmentId", "= 10");

vcRow2 . setConjunction (ViewCriteriaRow.VC_CONJ AND |
ViewCriteriaRow.VC_CONJ NOT) ;

vc.addElement (vcRow2) ;

vo.applyViewCriteria (vc) ;

vo.executeQuery () ;

}

Multiple view criteria can be combined by using the UNION operator or you can do
this in SQL. The following example illustrates how you can apply the UNION operator
on two view criteria's:

//In application module implementation class

//Get employee view object
ViewObject vo = findViewObject ("EmployeeDetails") ;
vcu = vo.createViewCriterial() ;

[140]

Chapter 4

vem = vo.getViewCriteriaManager () ;
vcu.setConjunction (ViewCriteria.VC CONJ UNION) ;
//Add first VC

vcu.add (vem.getViewCriteria ("JobCriteria")) ;
//Add next VC

vcu.add (vem.getViewCriteria ("SalCriteria")) ;
vo.applyViewCriteria (vcu) ;

vo.executeQuery () ;

To access bind variables programmatically from a view object, always route your
request through variable value manager. Note that a Ul search form (af : query) built
by dropping viewCriteria accesses the bind variable values through the variable
value manager of the view object. So this approach also helps you to initialize the
bind variable value displayed in af : query, if required. Here is an example:

//This is in application module impl.
public void initEmpNameInVcC () {
ViewObject vo = findViewObject ("EmployeeDetails") ;
//Get variable value manager
VariableValueManager vvm = vo.ensureVariableManager () ;
String bvEmployeeName=vvm.getVariableValue ("bvEmpName") ;
//Assign value to bind variable
String empName="Chinmay";
vvm.setVariableValue ("bvEmpName", empName) ;

}

By default, when you execute a view object with specific conditions, the framework
overrides the default row set to store the result. Sometimes you may want to extract
rows from the default row set in memory without overriding the default row set. In
other words, search in memory without affecting the default row set of a view object.
You can do this by calling findByViewCriteria () on view object. The following
example uses this API to perform filtering of country names in memory. Note that
query mode for view criteria is set as ViewCriteria.CRITERIA_ MODE_CACHE.

public RowSet searchInMemoryWithoutAffectingDefaultRowset () {

ViewObject vo = findViewObject ("Countries") ;

vo.executeQuery () ;
showRows (vo, "Print All Rows") ;

//Define VC for in-memroy filtering

ViewCriteria countryStartsWithA = vo.
createViewCriterial() ;

countryStartsWithA.setCriteriaMode (
ViewCriteria.CRITERIA MODE_ CACHE) ;

//Criteria for finding country names with letter A

ViewCriteriaRow vcrl = countryStartsWithA.
createViewCriteriaRow () ;
vcrl.setAttribute ("CountryName", "LIKE A%");

countryStartsWithA.add (verl) ;
//Set In memory VC mode

[141]

Introducing View Object

countryStartsWithA.setCriteriaMode (
ViewCriteria.CRITERIA MODE_ CACHE) ;
//Perfrom in-memory filtering
//and get result in new row set
RowSet rs = (RowSet)vo.findByViewCriteria (
countryStartsWitha, -1,
ViewObject .QUERY MODE SCAN VIEW ROWS) ;
return rs;

Effective dated view objects

This topic is in continuation with what we discussed under the topic Effective dated
entity object in Chapter 3, Introducing Entity Object. Effective-date-enabled view objects
are useful to limit the row set returned by a view object based on the value set for the
property ApplicationModule.EFF_DT PROPERTY_STR.

To define an effective dated view object, you should define an effective dated entity
object first as we discussed in Chapter 3, Introducing Entity Objects. Once your effective
dated entity object is in place, define a view object based on the date effective entity.
When you run the effective dated view object, the framework will append the WHERE
clause with the BETWEEN clause to enable date effective filtering. For example, if you
have marked the attributes startDate and EndDate in JobHistoryEO as effective
start date and end date, the framework will append the WHERE clause — for the date
effective JobHistoryVo at runtime —as follows:

SELECT JobHistoryEO.EMPLOYEE ID, JobHistoryEO.START DATE,
JobHistoryEO.END DATE WHERE (:SysEffectiveDateBindVar BETWEEN
JobHistoryEO.START DATE AND JobHistoryEO.END DATE)

The framework will use value set for the property EFF_DT PROPERTY_

STR in the application module to supply the value for the bind variable
SysEffectiveDateBindvar at runtime. The default value is the current date. You
can set EFF_DT PROPERTY_STR as shown in the following example. The client can
invoke the method with appropriate effective date value.

// A method in HRServiceAppModuleImpl.java
//This method initializes effecitvedate with the value passed // by
the client
public void initEffectiveDate (Date effectiveDate) {
//Set the AM property
setProperty (ApplicationModule.EFF DT PROPERTY STR,
(effectiveDate == null) ? new Date("2008-16-10")
effectiveDate) ;

[142]

Chapter 4

Using alternate keys in a view object

In the last chapter on entity objects, we learned that alternate keys allow us to
define unique keys that can be used for the fast look up of specific entity rows. If
you want to enable search based on alternate key for a view object, you will have

to define alternate keys at the view object level too. This feature is available only for
entity-based view objects and the underlying entity should have an alternate key
defined before starting the alternate key definition for the view object.

To define an alternate key for a view object, click on the General tab in the overview
editor of a view object and expand the Alternate Keys section. Click on the green
plus icon to add an alternate key and then enter a name in the Alternate Key Name
field. Now you need to select the existing alternate key definitions from the entity
object usages, as appropriate. Click on OK to save the changes.

The following example illustrates how you can make use of alternate keys to find
View rows.

The following code snippet illustrates the usage of alternate keys for finding rows

in a view object. Note that when you search using alternate keys, the framework first
checks whether the row is available in the entity cache, and if not found, the search is
performed against the database.

//In application module implementation class

public void findByAlKey () {
ViewObject vo =findViewObject ("EmployeeDeptDetails") ;
//EmployeeDeptDetailVO has two entity objects EmpEO and
//DeptEO. The alt key EmpDeptAltKey is defined on
//EmployeeDeptDetailVO by selecting alt keys from both the
// EO
Key empDeptAltKey = new Key(new Object [] { "JWHALEN",
"Administration" });
//findByAltKey () has the following method signature :
//findByAltKey (String keyName, Key key, int maxNumOfRows,
//boolean skipWhere)
RowIterator iter = vo.findByAltKey ("EmpDeptAltKey",
empDeptAltKey, -1, false);

[143]

Introducing View Object

Using findByKey() on view objects

View objects based on multiple entity usages have the ability to find view rows
by using keys from the entity usages. It follows these conditions:

The attribute values, which form the key, should be marked as the key
attributes in the view object.

If the secondary entity usage has multiple attributes as a primary key
and you want to include keys from the secondary entity usage in the
findByKey () call, you will need to make sure that all the primary key
attributes in the secondary entity object are marked as key attributes
in the view object.

findByKey () will allow you to search based on partial keys. However,

the keys that you are passing as an argument are assumed to be in the

same order as they are defined in the view object. If you want to perform a
partial key search by skipping some keys, make sure you are handling them
properly by passing null values to keep in the order as they appear in the
view object. Here is an example for a key with null arguments:

For example, consider a business scenario where you need to search for a
specific employee row and update the salary details. When you implement
such use cases, you may always consider using findByKey () on view object.
This call will try to read the cached entity row first, and will hit database
only if the row is not yet queried. The following code snippet illustrates

the search, using findByKey () on the view object :

//In application module implementation class

public Row[] findEmpByKey (Integer empld, Integer deptId)
// EmployeeDeptDetails has EmployeeEO and DepartmentEO
// as entity usages
ViewObject vo = findViewObject ("EmployeeDeptDetails") ;
//EmployeeId is PK in EmployeeEO and DepartmentId
//is PK in EmployeeEO
//Both these attributes are makrked as Keys in the
//EmployeeDeptDetailsVO

Key key = new Key(new Object[] { empId, deptId });
//-1 implies return all matching rows

Row row[] = vo.findByKey(key, -1);

return row;

[144]

Chapter 4

Creating new rows through the view object

Create a new view row by calling createRow () on the view object as shown in the
following code snippet:

/**The createCountry is a custom method defined in application
* module implementation class.
*/
public void createCountry() {
//Get the view object
ViewObject countries = findViewObject ("CountryVvo") ;
// Create a row and fill in the columns.
Row row = countries.createRow() ;
row.setAttribute ("CountryId", "IN");
row.setAttribute ("RegionId", 3);
//Insert row in to the default row set
countries.insertRow (row) ;

}

You can also use createAndInitRow (AttributeList initVals) on the view object
to create a new view row. This API allows you to initialize the row with an attribute
list. Note that this is primarily designed for initializing entity objects in the context
of composition association and inheritance hierarchy. More specifically, you can call
this API while creating child entity objects participating in a composition association
in order to initialize it with foreign key attribute values. This is also used for
initializing discriminator attributes for entity objects participating in an inheritance
hierarchy. Note that when you use this method on a view object based on multiple
entity usages, the framework will not consider attributes (other than association

and discriminator columns) supplied for secondary entities through the input list
while creating a new view row. The following section contains an example for the
createAndInitRow () API usage in the context of composition association.

Creating child rows in composition association

Creating a new child row is a bit tricky when the master-child entity association
type is composition. When you mark an association between master and child entity
objects as composition, the framework takes the necessary steps to ensure that the
child entity object row does not exist without the master entity row. If you try to
create a new child row by calling createRow () on the view object, the framework
will throw the oracle.jbo.InvalidOwnerException: JBO-25030: Failed to
find or invalidate owning entity exception.

[145]

Introducing View Object

There are two possible ways to create child entity rows in this case:

Find the master row by using findByKey () or calling executeQuery () with
a proper condition and then get the RowIterator for the child collection

by accessing the view link accessor attribute. Now you can use the child
RowIterator to call createRow () for creating the child row. The following
code snippet illustrates the creation of the child entity row for the
Country-Location composition association:

//In application module implementation class
/**
* This custom method defined in application module
* creates child location rows for a master
* country entity through accessor iterator
*/
public void createChildRowsThrulter () {
//Find the parent view object
ViewObject countries = findViewObject ("Countries") ;
//IN is the Key value for a specific Country row
Key key = new Key(new Object[] { "IN" });
//Find the country for 'IN', maxNumOfRows=1

Row rows[] = countries.findByKey(key, 1);
//Access the RowIterator for Location
RowIterator locIter = (RowlIterator)rows[0].

getAttribute ("Locationvo") ;
//Create and init location row
Row row = locIter.createRow() ;
row.setAttribute ("LocationId", 2200) ;
row.setAttribute ("City", "Bangalore") ;
locIter.insertRow (row) ;

}

Alternatively, you can directly create a new row in the child view object,
using createAndInitRow () by passing an appropriately constructed instance
of oracle.jbo.NameValuePairs, which includes the foreign key attribute
that provides the context for a child row. Here is an example:

//In application module implementation class

/**

* This custom method defined in application module
* creates child location rows for a master

* country entity using createAndInitRow ()

*/
public void createChildRowsThruNameValuePairs () {
ViewObject locations = findViewObject ("Locations") ;

//Initialize Attributes and Values
String[] attributes = new String[] { "CountryId" };

[146]

Chapter 4

Object[] values = new Object[] { "IN" };

//Pass the foreign key value for Country while

//initializing new location row

Row locRow = locations.createAndInitRow (new
NameValuePairs (attributes, values)) ;

//Set other attributes

locRow.setAttribute ("LocationId", 2200) ;

locRow. setAttribute ("City", "Bangalore") ;

locations.insertRow (locRow) ;

View link consistency

ADF view objects allow you to create multiple view objects on the same entity object.
Though this looks simple, things become slightly complex when you manipulate
rows through different view objects. A framework may need to ensure that all the
view objects based on the same entity display the same data for the user session. In
this section, we will learn a mechanism used by ADF Business Components to ensure
consistency across view objects based on the same entity object.

To keep our discussion simple, let us take two view objects, DepartmentDetailVo
and DepartmentSummaryVo, built using same entity object, DepartmentE0. Suppose
you are creating a new row through DepartmentDetailvo. Once you commit the
changes to the database, on next query execution, this new row will be available

for all view objects that are based on DepartmentE0. What if your business user
wants the new row to be available for Department SummaryVvo before committing

the changes to the database? Well, this feature is available out of the box with view
objects. This feature is known as view link consistency. View link consistency allows
all view objects based on the same entity objects to display the newly created entity
row through any of the view objects. Let us take a closer look at this feature.

Configuring view link consistency

You can control the view link consistency at application module level through the
property jbo.viewlink.consistent. To edit this property, double-click on the
application module in the model project to display the overview editor. Go to the
Configuration page and then choose the desired configuration to edit. In the Edit
Configuration dialog, select the Properties tab, and scroll to the jbo.viewlink.
consistent property to select the desired value. The possible values are as follows:

* DEFAULT: This value means, for single entity usage, that view link consistency
is enabled.

[147]

Introducing View Object

For multiple entity usages,

o

If all secondary entity usages are marked as contributing reference
information, view link consistency is enabled.

If any secondary entity usage is marked as not being a reference,
view link consistency is disabled.

* true: View link consistency is enabled in all cases.

* false: View link consistency is disabled in all cases.

If you want to enable or disable view link consistency for a specific view object,
override the create () method in the view object implementation class and call
setAssociationConsistent (boolean) as shown in the following code snippet:

//In view object implementation class

protected void create() {
super.create () ;
//Pass true to enable view link consistency.
//Pass false to disable view link consistency.
setAssociationConsistent (true) ;

}

It is not mandatory to have the view link consistency feature enabled for
all view objects. If your application does not need this feature for certain
view objects, you can turn it off programmatically by passing false to the
setAssociationConsistent () call

1
‘\Q View link consistency is enabled only for view objects based on

entity objects.

How view link consistency works

Let us understand the working of view link consistency with an example.

Consider two view objects, DepartmentDetailvo and Department SummaryVo,

built using the same entity object, DepartmentE0. When you create a new row on
DepartmentDetailVo, the call creates a new DepartmentEO instance. When you set
a primary key for the new row, the entity instance will be added to the entity cache.
This action fires an event by indicating that a new row has been created and all other
view objects that are backed up by DepartmentEO receive this event. If view link
consistency is enabled, the view object will walk through its entire query collections
(oracle.jbo.server.QueryCollection) and start processing the new row for each
query collection object.

[148]

Chapter 4

While processing the new row for the query collection, the view objects check if the
row already exists in the collection. If the query collection does not have any view
row for the new entity instance, a new view row is created. However, the new row
is added only after the following check.

The view object's rowQualifies () method and RowMatch are applied to the new
view row to see if the row qualifies to be in this query collection. If the in-memory
filtering succeeds, the new row is finally inserted into the query collection. The
insertion location for the new row in the row set varies based on the state of the
view object. There are two possible scenarios:

* Consider two entity-based view objects backed up by the same entity object.
When a new row is created in a row set for one of the view objects, the
framework sends a message to the second view object, indicating the creation
of a new row. If the second view object has view link consistency enabled, a
copy of the new row is added to the bottom of second view object's row set.

» If a view object has view link consistency enabled, when you call the
executeQuery () method, any qualifying new rows are added to the top
of the row set before the queried rows from the database. This typically
happens if view link consistency was disabled for a view when the new row
was added to the entity cache through another view object. Later, when you
enable view link consistency programmatically and call the executeQuery ()
method, framework uses this rule for adding the matching new rows.

Why does view link consistency fail when you add a
dynamic WHERE clause?

When you call setWhereClause () on a view object to set a WHERE clause at runtime,
the view link consistency feature will be disabled for that view object. This is because
the framework may not be able to use the complex WHERE clause conditions to filter
the rows in memory. However, you can work around this scenario by providing a
custom RowMatch object to qualify new rows for adding to the row set and making
acall to setAssociationConsistent (true) after setWhereClause () on the

view object.

[149]

Introducing View Object

The following is an example that illustrates this idea. This example uses two view
objects, EmployeeVvo and EmployeeInDeptVO—both are based on EmployeeEoO.
EmployeeVoO lists all employee rows, whereas EmployeeInDeptVo lists rows from
Admin department alone. By default, the view link consistency is enabled for
these two view objects. Due to this, when you create a new row in EmployeeVvo,

it will be reflected in EmployeeInDeptVvo as well. However, if you add a WHERE
clause dynamically to EmployeeInDeptVvo, the framework disables view link
consistency and the new row created through Employeevo will no longer

appear in EmployeeInDeptVO.

A possible solution for this use case is to explicitly call
setAssociationConsistent (true) on EmployeeInDeptVO after calling
setWhereClause (). You can add a RowMatch object to empInDeptVO in order to filter
the unposted (new) rows in memory. The following code snippet from an application
module implementation class illustrates this concept:

//This is a custom method is defined in application module
//class
public void exampleForVLConsistencyEnablement () {

//Get the EmployeesInAdminDept view object
ViewObject empInDeptVO = findvViewObject
("EmployeesInAdminDept™") ;
//The below call disables view link consistency
empInDeptVO.setWhereClause
(" EmployeeEO.LAST NAME = :bvLastName ") ;
empInDeptVO.defineNamedWhereClauseParam
("bvLastName", null, null);

//Set the condition for in memory filtering which is

//needed to filter out unwanted new rows

//when you expliclty enable view link consistency

//by calling setAssociationConsistent (true)

RowMatch rm = new RowMatch ("LastName = :bvLastName") ;

empInDeptVO.setRowMatch (rm) ;

empInDeptVO.getVariableManager () .setVariablevValue
("bvLastName", "Purushothaman") ;

//Re-enable the view link consistency
empInDeptVO.setAssociationConsistent (true) ;

//Get the employee view object

ViewObject employeeVO = findViewObject ("Employees") ;
Row row =employeeVO.createRow() ;

employeeVO. insertRow (row) ;

[150]

Chapter 4

row.setAttribute ("EmployeeId", 24170) ;

(
row.setAttribute ("FirstName", "Jobinesh") ;
row.setAttribute ("LastName", "Purushothaman") ;
row.setAttribute ("Email", "jobineshexyz.com") ;
row.setAttribute ("HireDate",
new oracle.jbo.domain.Date () .timestampValue ()) ;
row.setAttribute ("JobId", "AD PRES");

empInDeptVO.executeQuery () ;

//Along with rows from database, empInDeptVO

//will have new row as well

System.out.println("Count "+
empInDeptVO.getEstimatedRowCount ()) ;

What happens when you execute a view
object?

In Chapter 2, Introduction to ADF Business Components, you were introduced to the
collaboration of business components during a call to executeQuery () on a view
object. In this section, we will take a detailed look at the execution plan for the
following code snippet to understand the concepts better. The view object used

in this example uses the default tuning settings. Data fetch mode is set as fetch as
needed (which is the default).

//In application module implementation class
public void executeEmployeeVo () {
//Get employee view object
ViewObject vo = findViewObject ("EmployeeDetails") ;
//Execute employee view object
vo.executeQuery () ;

//Fetch rows from the ResultSet
while (vo.hasNext()) {

Row row = vo.next () ;

//Work with empRow

[151]

Introducing View Object

To keep it simple, we are splitting this discussion into two parts. In the first part, we
will analyze the basic query execution for retrieving the result set from datasource.
In the second part, we will analyze the iteration over the result set.

Client ViewObject RowSet QueryCollection SQLBuilder Database

executeQuery() !

getDefaultRowSet

»

>
executeQuery

prepareRowSetForQuery

prepareVOForQuery

—

getRowFilter
initQuerycollection

getParametersAsStorageTypes

executeQueryForQollection

A

executeQuery

A

getPrepargd$tatement()

generate Query|

buildQuery R
___________________ PreparegStatement N
" bindParametersForColledtion execute Query
e SELECT query R
SetResultSetForCollection J

=

[152]

Chapter 4

When a client calls executeQuery () on a view object, the framework will try to get
the default row set if it is already present. If this is the very first execution, a new
row set will be created and assigned to the view object. Once the row set is in place,
the view object will delegate the call to the default row set for further action. At this
stage, the row set engages the view object in the execution cycle by invoking the call
back on view object instance prepareRowSetForQuery (ViewRowSetImpl vrs).
This callback method can be overridden to alter the default query or to assign
additional bind variable values to the current row set at runtime, right before

the query execution.

The prepareRowSetForQuery () method in the view object in turn will invoke
prepareVOForQuery (). As the name suggests, this method prepares the view
object instance for query. Then, row set will look for any bind parameter values in
the query and if found, it will prepare an array of bind parameters. Row set uses a
data structure known as row filter to hold this bind parameter array.

There may be multiple query collections for a view object —each holding rows for a
unique row filter object (search conditions). Row set will try to identify an existing
query collection by comparing the row filter values. If no query collection exists, a
new instance is created and associated to the row set.

The next step is to build a parameter storage array, extracting the bind variable
values defined for the view object instance. This array of bind parameter values will
be used later in the execution cycle to supply the bind variable values appearing in
the query. Once the basic preparation for query execution is over, the actual work
horse is put into action — query collection.

Row set delegates the remaining tasks to query collection by invoking
executeQuery () on it. Query collection will start the actual execution by invoking
the call back executeQueryForCollection (Object gc, Object[] params,

int noUserParams) method on the view object. This method can be overridden

if you want to skip the default execution path in order to read data from alternate
datasources. Query collection asks the view object for JDBC preparedStatement for
firing the SQL SELECT query. In response to this call, view object reads the relevant
metadata and uses the native query builder to generate the native SQL query and

returns it to the caller. The bind parameter values are set by the bindpParametersF
orCollection (QueryCollection gc, Object params[], PreparedStatement
stmt) method in the view object.

[153]

Introducing View Object

Once all is set, query collection executes PreparedStatement and stores the result
set for further action.

[oo | [vewoest | [wowoormten] [mowswt |

Rws,m.,.m] [Quory z:oumion] [Entity Definition| Entity Object

executeQuery) '

Ty

hasNext) = . .

! hasNext() X hasNext()

getRow(inde})

get(index)

hasNextForCollection

LT Boolean

[ait

"« createRowFromResultSet()
createlnstanceFromResultSet()

2

ate()

init()

createMissingEntitiesFromViewDef(
‘ """ Entityimpll] +
,,,,,, Erftityimpi[] .
Hopulate(Resultset) .
getRow
: addRowTocoll(ViewRowlmpl)

[Row

I Hoaion

= Boolean

next(Lo next()

next()

getRow(index) . .
i get(index) N
+Row :

Row

When a client starts iteration on the row set by calling hasNext () on the view
object, the call reaches the row set iterator. Row set iterator will calculate the current
row index and will call getRow () on row set. Row set delegates the call to query
collection. Query collection will read the result set to check if it has any rows to
process by calling hasNextForCollection (Object gc). If this call returns true,
query collection will issue a call back method createRowFromResultSet (Object
gc, ResultSet resultSet) on the view object to create a row for holding

the result.

[154]

Chapter 4

The next step is to start the new row creation. The view object delegates the row
creation job to the view object dentition object. The view object definition object
creates a new row and initializes the row with the right storage mechanism. If the
view object is based on updatable entity objects, blank entity instances will be created
to back up the view row. For read-only or non-entity-based view objects, query
collection will use a thin storage known as view row storage. Once the data storage
is ready, the framework will populate the view row with attribute values from the
result set. The newly created row will be added finally to the query collection after
executing the in-memory criteria (if any) set on the view object.

When the client calls vo.next (), the call reaches query collection, and it returns the
row which is added in the last step.

The preceding steps are repeated till client finishes the iteration. Note that data read
sequences vary based on data fetch mode set for the view object. If the view object

is configured to fetch all the rows at once, data retrieval from the database occurs as
part of the query execution itself, without any need of explicit request from the client
for the row set.

Summary
In this chapter, we discussed the general concepts behind view object, its
architecture, and configurations. More specifically we discussed:
* Core features
* Defining and configuring view objects
* How to use view objects to query datasources in real life
* Runtime behavior of view objects
The story on view objects is not over yet. More exciting things are in queue. We will

be covering more advanced concepts and examples on view objects in Chapter 5,
Advanced Concepts on Entity Objects and View Objects.

[155]

Advanced Concepts on Entity
Objects and View Objects

In the previous chapters we have discussed the entity objects, view objects, and their
basic functionalities. This chapter will take you deeper into the internals of view
objects and entity objects. In this chapter we will focus on the advanced concepts of
these components along with code samples.

This chapter includes the following sections:

* Taking a closer look at entity objects
i. Lifecycle of an entity object

ii. Some generic usage patterns with examples

* Taking a closer look at view objects
i. Lifecycle of a view object

ii. Some generic usage patterns with examples

* Building business components dynamically

Taking a closer look at entity objects

We have discussed the basics of entity objects in Chapter 2, Introduction to ADF
Business Components. It is now time for us to understand the concepts better.
We will need to take a deep dive into entity objects in this section. Take a deep
breath and prepare yourself.

Advanced Concepts on Entity Objects and View Objects

Lifecycle of an entity object

In this section, we will learn what happens to the state of an entity object when
you, as a developer, create, update or delete an entity instance, and commit the
transaction later.

When a client starts a new business transaction or commits a business transaction,
entity objects go through certain stages in the lifecycle. Let us explore the different
states of an entity row when it participates in a typical business transaction.

* Create a new entity row: Consider the following code snippet that creates a
department entity row:

//In application module implementation class
public void createDeptEntity() {

//Get entity definition object

EntityDefImpl departmentEODef = DepartmentEOImpl.
getDefinitionObject () ;

//Create the blank entity instance,
DepartmentEOImpl newDept =
(DepartmentEOImpl) departmentEODef . createInstance?
(this.getDBTransaction(), null);
//newDept status is STATUS _NEW now

newDept . setDepartmentId(1000) ;
// newDept status is STATUS _NEW now

}

When you create an instance of an entity object by using the createInsta
nce2 (DBTransaction,AttributeList) method on the entity definition,
its state is New. Entity objects in the New state will qualify in order to
participate in the transaction.

[158]

Chapter 5

Find and update an entity row: Consider the following code snippet that
finds an existing department entity row and updates it:

//In application module implementation class

public void findAndUpdateDeptEntity (Integer deptId)
//Create Key
Key key = DepartmentEOImpl.createPrimaryKey (deptId) ;
//Find the entity row
DepartmentEOImpl deptRow =

(DepartmentEOImpl)DepartmentEOImpl.
getDefinitionObject () .
findByPrimaryKey (getDBTransaction (), key);

//deptRow status is STATUS_UNMODIFIED now

deptRow.setDepartmentName ("IT Admin") ;
//deptRow status become STATUS_MODIFIED now

}

When a client invokes finder methods on an entity definition or on an entity
based view object, the framework creates entity rows for each row from the
database. The state of these entity rows will be marked as Unmodified. Later
when the client modifies some attributes, the state is transitioned to Modified
and they become eligible to participate in the transaction.

Remove an entity row: Consider the following code snippet that finds a
department entity row and removes it:

//In application module implementation class

public void findAndRemoveDeptEntity (Integer deptlId) {
//Create Key
Key key = DepartmentEOImpl.createPrimaryKey (deptId) ;
//Find the entity row
DepartmentEOImpl deptRow =

(DepartmentEOImpl)DepartmentEOImpl.
getDefinitionObject () . findByPrimaryKey
(getDBTransaction(), key);

//deptRow status is STATUS UNMODIFIED now
deptRow.remove () ;
//deptRow status become STATUS DELETED now

[159]

Advanced Concepts on Entity Objects and View Objects

When a client calls the remove method on an entity object, entity state
becomes Deleted and it will be added to the transaction cycle.

* Commit the transaction: The ADF framework commits the transaction
when the client calls commit on the transaction object. An example is
given as follows:

//In application module implementation class
public void commitTransaction(){
getDBTransaction () .commit () ;

}

The transaction commit cycle takes place in two phases, posting changes to
the database and then committing the database transaction. On successful
commit to the database, all the entities in the state New and Modified will be
transitioned to Unmodified, and Deleted entity rows will be transitioned to
the Dead state.

The following diagram depicts the entity row status at various stages of a

business transaction:
setNewRowState()
=i Initialized I

setAttribute()

¢ """"""" EntityDef:: createlnstance2()
_______ New S Dead
. remove() A
commit
finder methods on commit
EntityDef or ViewObject Yy =
"""" 'l Unmodified l‘ Deleted I
executeQuery on A
ViewObject commit
setAttribute() ﬁ remave()
------------------- -Pl Modified j

commit - Successful Transaction Commit

[160]

Chapter 5

Reading the current state of an entity row

You can use the getEntityState () and the getPostState () methods on an entity
object to access the current state of an entity row. These APIs are useful if you

need to determine the status of the entity instance in your business logic and

take actions accordingly.

* The getEntityState () method gives you the current state of an entity row
with regard to the transaction

* The getpostsState () method gives you the current state of an entity row
with regard to the database

Once you post the changes to the database (without committing the transaction),
this method behaves differently from getEntitystate (). For example, when you
create a new entity row, both getEntityState () and getPostState () on the
entity row returns Entity.STATUS_NEW. If you post the new entity row (without
committing the transaction) the getEntityState () returns Entity.STATUS_NEW
and getPostState () returns Entity.STATUS UNMODIFIED. Once the transaction is
committed, both the calls return Entity.STATUS UNMODIFIED. This is illustrated

in the following code snippet:

//In application module implementation class
public void checkingEntityStates() {
//Get defnition object
EntityDefImpl departmentEODef = DepartmentEOImpl.
getDefinitionObject () ;
//Create the entiy instance in the current transaction
DepartmentEOImpl newDeptl =
(DepartmentEOImpl) departmentEODef .
createInstance2 (this.getDBTransaction (), null);
newDeptl.setDepartmentId(1000) ;
newDeptl.setDepartmentName ("IT Strategy");
//newDeptl.getPostState() - NEW
//newDeptl.getEntityState() - NEW

//Post changes to DB
getDBTransaction () .postChanges () ;
//newDeptl.getPostState() - UNMODIFIED
//newDeptl.getEntityState() - NEW

//Commit the Transaction
getDBTransaction () .commit () ;
//newDeptl.getPostState () - UNMODIFIED
//newDeptl.getEntityState() - UNMODIFIED

[161]

Advanced Concepts on Entity Objects and View Objects

When you remove a new entity instance by calling remove () onit,
getEntityState () returns Entity.STATUS_NEW because the entity
instance is still new for the ongoing transaction. The getPostState ()
returns Entity.STATUS_ DEAD.

When you remove an existing entity instance by calling remove () on it, both
getEntityState () and getPostState () returns Entity.STATUS DELETED.
If you post the deleted entity row (without committing the transaction) the
getEntityState () returns Entity.STATUS DELETED and getPostState ()
returns Entity.STATUS_ DEAD. Once the transaction is committed, both the
calls return Entity.STATUS DEAD.

Reading the originally retrieved attribute value

There are use cases where you may want to read the originally retrieved values
of the entity attributes in your business logic. For example, while updating the
salary for an employee, you may want to validate whether the difference between
the original and revised salary is within the allowed range.

If you need to read the originally retrieved value for an attribute in an entity,
you can use either of the following;:

* Call getattribute (attrIndex,EntityImpl.ORIGINAL_VERSION) onan
entity object. An example is shown as follows:

//In EmployeeEOImpl class
/**
* Validation method for Salary hike.
*/
public boolean validateSalaryHike (BigDecimal newSalary)
//Gets the attribute index for'Salary'
int attribIndex = EmployeeEOImpl.SALARY;
//Read originally retrieved value of 'Salary'
BigDecimal originalSlary = (BigDecimal)getAttribute (attribIndex,
EntityImpl. ORIGINAL_VERSION) ;
//returns false if the revised slary is less
if (newSalary.compareTo (originalSlary) > 0)
return true;
else
return false;
}

* Call getPostedAttribute (int attribIndex) on an entity object. This is
a protected method in the EntityImpl class, and cannot be accessed by a
client unless you expose it through an overridden public method through
a subclass.

[162]

Chapter 5

Retrieving all entity instances in the cache

You can retrieve all entity instances in the cache for a specific definition, including
the deleted entity rows, using the method getAllEntityInstancesIterator () on
the entity definition instance. The following example illustrates the usage of this APL
This example finds deleted instances of the model.entity.DepartmentEO entity
type and returns the list to the caller. The returned list can be used by the client for
summarizing the number of rows deleted by the business user.

//In application module implementation class

/**
* Return the list of deleted department rows
* @return
*/

public ArrayList<Entity> findDeletedEmployees() {
//Get an iterator for stepping through instances
//of Entities of specific type
//Iterator iterator

EntityDefImpl.findDefObject ("model.entity.DepartmentEO") .
getAllEntityInstancesIterator (getDBTransaction()) ;

ArrayList<Entity> deletedList = new ArrayList<Entitys>();
//Steps through each instance in cache
//and indentify the deleted rows

while (iterator.hasNext()) {
EntityImpl eo = (EntityImpl)iterator.next();
if (eo.getEntityState() == Entity.STATUS DELETED) {

deletedList.add(eo) ;

}
}

return deletedList;

Lifecycle callback methods of an entity object

An ADF entity object includes a variety of callback methods for monitoring changes
in the lifecycle of entity rows. These callback methods are defined on the base

entity object implementation class (oracle.jbo.server.EntityImpl) which

can be overridden to add your custom logic, if needed. To customize the default
behaviour of an entity object, it is worth knowing these lifecycle callback methods
and the sequence in which they are called during the entity lifecycle. This section
discusses this topic.

[163]

Advanced Concepts on Entity Objects and View Objects

The following diagram depicts the sequence of a lifecycle callback for an entity
object; right from the entity row creation to the commitment of the transaction.

Create an entity row

[] Commit tiansaction
i”i“ji' ize validateEntity
initDefaults postChanges
v
create

initDefaultExpressionAttributes| ¢ doSelect

_ Modityanentityrow prepareForDML

Delete an entity row beforeCommit
T i
1 \ -
i remove L afterCommit
! 1
H 1
! 1

Let us discuss these methods in detail.

What happens when a new entity instance is
created?

When a client creates a new entity row, the framework invokes the following
methods on the entity instance to initialize the entity row. The methods are listed in
the sequence as they are invoked at runtime.

* EntityImpl::initialize (): When you create a new entity instance, under
the cover, the framework performs the basic initialization tasks for the new
instance. After running the mandatory initialization activities, the framework
invokes initialize () on the entity instance. You can override this method
if you want to add initialization logic for the new entity row that needs to be
executed early in the lifecycle, even before the framework starts defaulting
attribute values.

[164]

Chapter 5

EntityImpl::initDefaults (): This method initializes default values for

a newly created entity row using the default static value settings from the
entity definition. The defaulting attribute values using Groovy expressions
are handled later in the cycle by the initDefaultExpressionAttributes ()
method.

This is also invoked when the client calls refresh (int refMode) on
a new entity row to undo the changes. We will discuss more about
EntityImplirefresh (int) later, under the section entitled Refreshing
entity rows, forgetting the changes.

EntityImpl:: create (AttributeList nameValuePair): This method
takes an attribute list for initializing the newly created row. The framework
uses this method to pass foreign key values to the newly created child entity
row if it is part of composition association. You can override this method

to supply default values to attributes while creating a new entity row. For
example, developers typically override this method to add custom logic

to initialize a primary key with a value from the database sequence. The
following is an example that initialized the Employee1d attribute with a
value from the database sequence:

//In EmployeeEOImpl (entity implementation class)
@Override
public void create (Attributelist attributelList) {
super.create (attributelist) ;
SequencelImpl seq = new SequencelImpl
("EMP_TABLE_SEQ", getDBTransaction());
Integer segNextval = seqg.getSequenceNumber () .intValue() ;
setEmployeelId (segNextval) ;

}

EntityImpl::initDefaultExpressionAttributes (Attributeli

st nameValuePair): This method initializes an entity row with values
evaluated from expressions that are defined on the attributes. Remember that
all the static value defaulting is handled in EntityImpl::initDefaults().

You should override this method for programmatically setting default
values for attributes or for executing some initialization code, which you
want to fire when the row is first created, as well as when a modified row
is refreshed back to initialized status by calling refresh (int refMode)

on it. As the method initDefaultExpressionAttributes () is invoked
towards the end of the initialization cycle after executing the initDefaults
and create methods, this is the safest place to add any custom logic for
programmatically setting the default attribute values.

[165]

Advanced Concepts on Entity Objects and View Objects

What is the right method to programmatically initialize attributes in
an entity object?

The right place to add your programmatic logic for initializing entity
attributes is in the overridden initDefaul tExpressionAttrib
utes (AttributeList nameValuePair) method in your entity
implementation class. This has the following advantages:

¢ This method is invoked after initDefaults (). Note
that initDefaults () handles defaulting static values
while initDefaultExpressionAttributes () handles

N defaulting dynamic Groovy expression default values. So your
-~ e sge o ey .
initialization logic can safely refer the attributes initialized
through both Groovy and static values.

* Another advantage is that when you revert a new row back to
the Initialized state by calling refresh (int refMode) onit,
the entity object's initDefaultExpressionAttributes ()
method is invoked, but not its create () method. On a related
note, when you call refresh () on a new row to revert the
changes done on attributes, make sure you are not passing
REFRESH REMOVE_NEW ROWS or REFRESH FORGET NEW
ROWS to the refresh () method.

See the section Refreshing entity rows, forgetting the changes for more
details on the refresh flags.

What happens when an entity instance is modified
or removed?

Once the basic initialization is done, an entity row is sent back to the client for use.
The following methods are invoked for an entity row in response to the update by
the client:

* EntityImpl::setAttributelInternal (int index, Object val): This
method is the global entry point for all attribute updates for an entity row.
This method is called to set an attribute value after validating the value
against declarative validators set for that attribute. The framework adds the
entity row to the current transaction whenever the client modifies any values.
If you need a quick brush-up on declarative validation support for entities,
refer back to the section entitled Adding validation in Chapter 3, Entity Objects.

[166]

Chapter 5

EntityImpl: :remove (): This method is invoked when a client calls
remove () on an entity instance. The framework marks the row for deletion
and adds it to the transaction listener list. You can override this method

to add your own business logic for the remove operation. The following
example overrides the remove () method to add some custom business
checks before allowing the removal of the row:

public class EmployeeEOImpl extends EntityImpl
//Other methods go here

//The remove () method is overridden to check whether
//the row is in use by other applications
@Override

public void remove () {
if (isInUseByOtherApps())
super.remove () ;
else
throw new JboException(
"Row 1s in use by another system");

What happens when the transaction is committed?

Modifying an entity row, or removing an existing row will mark the current
transaction as dirty and the affected rows will be added to the transaction's pending
change list. Later when a client commits the transaction, the framework invokes the
following methods on entity instances from the pending changes list to post changes
to the database.

EntityImpl::validateEntity (): This method validates the current entity
row as well as all the child entities linked through composition association.
This method is triggered by the framework for row currency (current row)
change and for committing the transaction. You may rarely override this
method in order to control the execution of entity validation. Note that ADF
provides better declarative mechanisms to control the validation execution
for an entity object, which is explained in Chapter 3, Entity Objects, in the
section entitled Adding validation.

[167]

Advanced Concepts on Entity Objects and View Objects

EntityImpl::postChanges (TransactionEvent e): This method controls
the data post cycle for the current entity row as well as for all child entity
rows linked through a composition association. Depending on the state of
this entity object, this method calls the following operations in sequence to
carry out the transaction post cycle: lock, preprareForDML, and doDML.

° EntityImpl::lock(): This method locks the row by calling
doSelect (lock) with the lock flag set to true. If the row is new or
already locked by this entity object, or if the transaction's locking
mode is None, then this method does not do anything at runtime.

° EntityImpl::doSelect (boolean lock): This method performs
SELECT or SELECT FOR UPDATE processing for the current row
depending upon the lock flag value. This method is invoked by the
framework in the following scenarios:

i. When the framework calls 1ock () on the current row,
this method is invoked with the lock flag set as true. In
the rest of the cases, that we discussed below, the lock
flag would be false.

ii. When a client calls findByPrimaryKey on an entity
definition to find a specific entity row.

iii. When a client calls findByKey () on a view object.

iv. When a client tries to read an attribute which is missing
from the entity cache.

v. When a client tries to update an attribute which is missing
from the entity cache.

vi. When a client calls refresh () on a row to refresh
with the database.

EntityImpl: :prepareForDML (int operation, TransactionEvent
e): As the name suggests, this method is invoked before posting
changes to the database which allows subclasses to modify any
attributes on this entity before posting changes to the database.

° In the case of batch mode, the modified entities in a
transaction are posted in two steps. In the first step,
the transaction manager notifies all entities with
prepareForDML () so that entities can make changes to
any attributes, take for example, a history column that
needs to be updated right before a database update occurs.
Then the doDML () is called on the entities to execute the
DML statements.

[168]

Chapter 5

° In the case of non-batch mode, the transaction manager
invokes the postChanges () method on the entity. The
postChanges () in turn invokes prepareForDML () followed
by doDML () . If you want to assign programmatic defaults for
entity object attribute values before a row is saved, override the
prepareForDML () method and call the appropriate attribute
setter methods to populate the derived attribute values.

EntityImpl::doDML (int operation, TransactionEvent e): This
method performs insert, update, and delete processing for the row.
This uses appropriate SQL builder implementation for building the
java.sql.PreparedStatement. For insert and update operations,
the DML statement will only set the values that have been modified
for this transaction. Other attributes do not participate in the DML.
Once Preparedstatement is generated for the entity row, the next
step is to bind the Preparedstatement with values to be inserted
or updated. After everything is set, this method executes the JDBC
statement. This method can be overridden to provide custom logic
for processing modified entity rows. For example, if you want an
entity object to update a non-database data source, then you should
override this method and provide the necessary implementation.

EntityImpl::beforeCommit (TransactionEvent e): This method is
invoked on each entity row participating in the transaction after the changes
have been posted to the database, but before committing the transaction to
the database. This method can be overridden to invoke stored procedures
based on business validation logic or a similar mechanism which requires
updated data in the database.

If the overridden beforeCommit () logic throws

aValidationException when you commit the

transaction, then it is recommended to set the jbo. txn.

~ handleafterpostexc property to true in the application
module configuration. This property tells the framework
to automatically handle the rolling back of the other entity
objects that may have already successfully posted to the
database (but not yet committed).

EntityImpl::afterCommit (TransactionEvent e): This method is invoked
on each entity row in the transaction's pending changes list after the changes
have been successfully committed to the database. This method can be
overridden to perform custom processing such as sending a notification or
triggering another service on a successful commit of a row to the database.

[169]

Advanced Concepts on Entity Objects and View Objects

Building programmatically managed entity

objects

When you build database-centric ADF applications, the out of the box features
offered by entity objects really eases the implementation. However, there are
business use case scenarios where these applications may need to read and write
data using non-conventional data sources such as web services or third party APIs. If
you want to use ADF entity objects for the purpose of updating data from alternative
data sources, you will need to build programmatic entity objects by overriding
lifecycle callback methods. In this section, we will take a look at the implementation
of a programmatic entity object.

To build a programmatically managed entity object, perform the following steps:

Right-click on the model project and select New | New Entity Object.
In the Create Entity Object wizard, enter the name and package for the entity.

Select the data source as Database Schema Object and deselect the Existing
Objects option. Click on Next to continue. If the IDE asks if you want to use
the entity object's name as the name of the schema object, click on NO

and proceed.

In the Attributes page, enter the attribute definitions and click on Next.

5. In the Java page of the Create Entity Object wizard, select the option
to Generate Entity Object class and include the Accessors and Data
Manipulation Methods for the entity object class. Click on Finish to
generate the entity definition. Select the Java implementation for the entity
in the model project, and override the lifecycle callback methods as we
discussed earlier.

The following example illustrates a programmatically managed entity object
implementation class that uses stored procedures to post changes to the database.
This example overrides doSelect (boolean lock) and doDML (int operation,
TransactionEvent e) methods from the base EntityImpl. The reason for selecting
these methods is that these are the two methods which interact with the database.
As we discussed earlier, doselect () is invoked when the framework tries to lock an
entity row before posting changes to the database, and also when a client calls the
finder method for reading an entity row using key attributes. The method doDML ()

is invoked to post changes to the database during the transaction post cycle.

//Programmatically managed entity implementation
//It uses PLSQL procedure for Insert, Update and Delete
public class DepartmentProgrammaticEOImpl extends EntityImpl({

[170]

Chapter 5

* Override the default doSelect processing
to invoke an appropriate stored procedure
* instead of performing the default one.

* @param lock

*/
@Override
protected void doSelect (boolean lock)
if (lock) {
callLockProcedureAndCheckForRowInconsistency () ;
} else {

callSelectProcedure () ;

/**
* Custom DML update/insert/delete logic here.
* @param operation the operation type
* @param e the transaction event
*/
@Override

protected void doDML(int operation, TransactionEvent e)
/**

* Call appropriate stored proc, checking operation flag set for
entity tow

*/
if (operation == DML INSERT)
//This method invokes PLSQL procedure for Insertion
callInsertProcedure (e) ;
else if (operation == DML _UPDATE)
//This method invokes PLSQL procedure for Update
callUpdateProcedure (e) ;
else if (operation == DML DELETE)
//This method invokes PLSQL procedure for Delete
callDeleteProcedure (e) ;

//Other methods and variables go here

}

[171]

Advanced Concepts on Entity Objects and View Objects

We are not giving the full source code of the programmatically
managed entity object here. The working examples for programmatic
M entity objects can be found in the example code that we mentioned
Q at the beginning of this book, in the Preface section. To access the
programmatic entity object sample in the example code, open the
ADFDevGuideCh5HRModel workspace in JDeveloper and look for
DepartmentProgrammaticEO in the Model project.

Generating a database independent unique ID

You can use database sequences to automatically generate primary key values for a
newly created entity row. This works for most of the applications. However, if you
are looking for a database independent mechanism to generate unique IDs across
different databases, then you can use the unique ID generation feature provided by
ADF middle tier.

How does unique ID sequencing work

The unique ID generation mechanism provided by ADF is facilitated by oracle.
jbo.server.uniqueid.RowIdAM, a row ID generator application module that comes
with the framework. The RowIdaAM uses a database table s_row_ID to track the unique
identifier values. When a client asks for a unique ID, the RowIdaM checks the cache
and returns the next identifier value from the cache, if it is available. Otherwise, a
database query is fired to fetch the identifier value. The generator logic looks for

the NEXT 1D column in the S _RoW_ID table, which contains the value of the next
available identifier. After returning an identifier, the NEXT ID column value

is incremented.

Using middle tier generated unique keys

To use middle tier generated unique keys for primary keys, run the following script
that is found in your JDeveloper installation on a database to generate the required
database objects:

<JDeveloperHome>/oracle common/modules/oracle.adf.model 11.1.1/bin/
bc4jUniquelId.sqgl

Once the database is set up with the required object, go to the Application Resources
panel in the Application Navigator window and define a new database connection
named ROWIDAM DB and point it to the database where you ran the SQL script in the
previous step.

[172]

Chapter 5

To assign the default value for a numeric primary key attribute, select the entity
objects in the overview editor and then select the attribute. Expand the Value tab in
the property inspector window, select Expression as the default value type and then
enter the following Groovy expression as the default value: oracle.jbo.server.
uniqueid.UniqueIdHelper.nextId.

M The unique ID returned by the expression oracle. jbo.
Q server.uniqueid.UniqueIdHelper.nextId is of type
java.math.BigDecimal.

If you want to force the unique ID mechanism to use a custom data source name
instead of the default name (RowIDAM DB), then add the following property
initializing logic in a static initialization block somewhere in the application
where it will be called before any unique ID is requested. Alternatively, you

can use a ServletContextListener for executing this initialization block.

if (PropertyDefaultContext.getInstance () .getDirect (
PropertyMetadata.ENV_ROWID AM DS NAME.pName) == null) {
PropertyDefaultContext.getInstance () .setDirect (
PropertyMetadata.ENV_ROWID AM DS NAME.pName,
"java:comp/env/jdbc/YourDatasourceDS") ;

}

You can set the previous property using a Java system property named

jbo.rowid am datasource name, where its value is the name of a JNDI JDBC
data source, for example, jdbc/YourDatasourceDS Or java:comp/env/jdbc/
YourDatasourceDS.

Refreshing entity rows, forgetting the
changes

When you work on undo features for an enterprise application, a very common
requirement may be the ability to roll back changes performed on a specific set of
rows without rolling back the entire transaction. The ADF entity object comes with
out of the box support for such use cases.

[173]

Advanced Concepts on Entity Objects and View Objects

You can call refresh (int refreshFlag) on an entity row to restore the entity-
mapped attributes to original values. The refresh behaviour of this method is
controlled by the flag or combination of flags passed as a parameter to this method.
The refresh flags available in the Row interface are as follows:

REFRESH WITH DB _FORGET CHANGES: The latest data from the database
replaces the data in the row regardless of the changes done on the row.
The newly created rows are reverted back to blank by default. If this flag
is used in combination with REFRESH REMOVE NEW ROWS, then new rows
are removed.

REFRESH WITH DB ONLY IF_ UNCHANGED: The latest data from the database
replaces data in the unmodified row, leaving the modified or the new row as
it is. If this flag is used in combination with REFRESH_REMOVE_NEW_ROWS, then
the new rows are removed.

REFRESH_UNDO_CHANGES: The latest data from the database replaces data

in the unmodified row. The modified rows' attribute values are reverted
back to their original values at the beginning of the current transaction. The
newly created rows revert back to blank by default. If this flag is used in
combination with REFRESH REMOVE_NEW_ROWS, then new rows are removed.
When in the REFRESH_UNDO_CHANGES mode, the entity row remains in its
previous state even after it is refreshed.

The following flags are typically used in combination with the previously
discussed flags:

REFRESH_REMOVE_NEW_ROWS: The new rows are removed during refresh.
Typically this flag is used in combination with other refresh flags using a
bitwise OR operator.

REFRESH_FORGET NEW_ROWS: The new rows are dead during refresh.
Typically, this flag is used in combination with other refresh flags using

a bitwise OR operator.

REFRESH CONTAINEES: This mode causes a refresh(int refreshFlag) call
on its child entity rows with the same refresh flags. Typically, this flag is used
in combination with other refresh flags using a bitwise OR operator.

For example, consider the following code snippet. This method reverts the
department row and its child employee rows to the initial state by calling refresh ()
with the following flag combination: Row.REFRESH_WITH_DB_FORGET_CHANGES and
Row.REFRESH CONTAINEES.

//In application module implementation class

/**
* This method revert department row and its containees
* to initial state

[174]

Chapter 5

* @param deptId
*/

public void revertDepartmentRowAndContainees (int deptId) {

ViewObject vo = findViewObject ("Departments") ;

Key k = new Key(new Object[] { deptid });

//Return the the element matches with Key

Row deptRow = vo.findByKey (k, 1) [0];

//Revert dept row and it's child employee rows

deptRow.refresh (Row.REFRESH WITH DB FORGET CHANGES | Row.REFRESH

CONTAINEES) ;

}

Bu

ilding custom history types

While discussing entity objects in Chapter 3, Entity Objects, we had a glance at

the history types shipped with JDeveloper. Though the default types offered by ADF
are good enough to meet most of the generic requirements, sometimes you will need
to create custom history types to track specific changes in your business data. In

this section, you will learn to create custom history types and their usage. Note

that the creation of custom history types involves the following three parts:

Building a custom history type

Implementing logic in the desired entity implementation class for returning
an appropriate value for the history type

Assigning the history type to the desired attribute in the entity definition

To create a history type, perform the following steps:

1.

Go to the main menu, select Tools | Preferences. In the Preferences dialog
window, expand the ADF Business Components section and then select
History Types.

On the History Type page, select New. In the New History Type dialog
window, enter History Type Id and Display String for the new history type.
The Type Id must be an integer between 11 and 126. Click on OK to save

the definition.

Once the basic configuration is done, open the entity implementation class
for which you want to use the new history type, and provide implementation
for the new history type by overriding the method getHistoryContextFora
ttribute (AttributeDefImpl attr) in the entity implementation class. The
framework will call this method to get the value for the history type enabled
attributes before posting changes to the database.

[175]

Advanced Concepts on Entity Objects and View Objects

4. The last step is to mark the desired attribute in the entity object as a history
type. To do this, select the desired attribute in the overview editor of the
entity object and choose the custom history type that you defined using the
Track Change History drop-down list. Save the changes.

For example, consider an airline reservation system that tracks bookings done by

a booking agent along with the city where the agent is operating. Instead of asking
the booking agent to enter the city for each booking he or she makes, let us make
the application to do this job. To do this, build a new history type, LoggedInCity
as we discussed earlier. Now select the entity object that posts booking data to the
database. This example uses the BookingEO entity object for handling booking
transactions. Along with booking data, it contains an attribute to hold the agent city
name. Open the Java implementation class for the BookingEO entity and override
the getHistoryContextForAttribute () method.

The following code snippet illustrates the implementation of the method
getHistoryContextForAttribute for the LoggedInCity history type. Note that the
value set for LOGGED_IN CITY HISTORY TYPE must be the same as the Type Id that
you specified while creating the history type.

//In Entity Implementation class

// Type Id for LoggedInCity history type
public final int LOGGED IN CITY HISTORY TYPE = 11;

@Override
protected Object getHistoryContextForAttribute (AttributeDefImpl attr)
{
//Custom history type, which return logged in city
//for the user
if (attr.getHistoryKind() == LOGGED IN CITY HISTORY TYPE) {

//return business city for the logged in user
//The following logic assumes the user profile object is
// holding city information for the user.
return ADFContext.getCurrent () .
getSecurityContext () .getUserProfile () .
getBusinessCity () ;

}

return super.getHistoryContextForAttribute (attr) ;

}

As the last step in this example, select the city attribute in the BookingEO and mark
it as the LoggedInCity history type. To do this, select the attribute in the overview
editor. In the Details tab, click on the Track Change History drop-down list and
choose LoggedInCity.

[176]

Chapter 5

During runtime, when you commit the transaction or post changes to the database,
the framework will invoke the overridden getHistoryContextForAttribute ()
method and will use the return value in order to populate the history enabled
attributes as appropriate.

Taking a closer look at view objects

In this section, we will explore the advanced concepts in view objects and features

that have not been discussed in Chapter 4, Introducing View Objects. We will start by
discussing lifecycle callback methods for a view object. As we move forward in this
section, we will discuss some advanced usage patterns for view objects with examples.

Lifecycle callback methods of a view object

The ADF view object component includes a variety of callback methods for executing
the query and for managing the result set. These callback methods are defined on the
base view object implementation class which can be optionally overridden to add
custom logic. The following diagram depicts the sequence of the lifecycle callback

for a view object.

Execute query

_,—59[exectueQuery
ViewObject:: executeQuery() |

v

prepareRowSetQuery

v

prepareVOForQuery]

v

RowSet: :exicuteQuery()

executeQueryForCollection

setRowSetForSqlGen

v

buildQuery

v

setResultSetForCollection]
v

hasNextForCollection]

v

createRowFromResultSet]

[bindParametersForCollection]

P e L LY
1
1

1 Call back when query collection E)]
! object is garbage collected :—e| releaseUserDataForCollection

Y |

Advanced Concepts on Entity Objects and View Objects

What happens when a client invokes
executeQuery() on a view object instance?

When a client invokes executeQuery () on the view object the following methods
defined on the view object are engaged at various stages of query execution:

* ViewObjectImpl::executeQuery (): This method is invoked when a client
calls executeQuery () on the view object. This method in turn engages the
default row set for the view object in the query execution cycle, and delegates
the call for further processing.

® ViewObjectImpl: :prepareRowSetForQuery (ViewRowSetImpl vrs):
This method prepares the row set for query execution. If you need to
assign bind variable values or modify the WHERE clause conditionally, just
before executing the query for a specific row set, then this is the method
where you can hook your custom code. This method also gets executed
before the count query methods such as getQueryHitCount ()and
getCappedQueryHitCount (). The count queries are typically used by
Ul components such as tables or tree tables to size their scroll bar.

* ViewObjectImpl::prepareVOForQuery (): This method prepares the view
object for build queries. If you need to assign bind variable values or modify
the WHERE clause conditionally, just before executing the query for a view
object, then this is the method where you can hook your custom code. This
method is called from prepareRowSetForQuery (). Logically, you will
override this method if you want to alter the query or to set bind variable
values at the view object level, which needs to be reflected in all containing
row sets.

® ViewObjectImpl: :executeQueryForCollection (Object gc, Object[]
params, int noUserParams): This method is invoked right before the row
set starts executing the query. If this method is overridden, the custom logic
will be applied to all row sets owned by this view object. In contrast, if the
user overrides the view object's executeQuery (), then the custom logic in
it applies only when the user calls executeQuery () on the view object. In
other words, if a client calls executeQuery () on secondary row sets, then
the framework will not engage the executeQuery () method during
query executions.

[178]

Chapter 5

Note that you should not use the ViewObjectImpl: :
executeQueryForCollection () method to alter the
bind variable value or modify queries at runtime, instead

N you must use either prepareRowSetForQuery () or

~ prepareVOForQuery () for the same. This is because the

Q framework extracts the bind variable values before calling
executeQueryForCollection () atruntime, and also this
method will never get engaged with count queries such as
getQueryHitCount () and getCappedQueryHitCount ().
So your custom logic will not be considered in count queries.

ViewObjectImpl: :buildQuery (int noUserParams, boolean
forRowCount) : This method builds the native SQL statement. A view object's
query statement is normally built from various clauses, such as SELECT, FROM,
WHERE, and ORDER BY that you set for a view object. However, an application
can bypass this mechanism either by supplying a user defined query at
design time and selecting an expert mode for the view object or by calling
setQuery () on a view object instance at runtime. While generating the
query, the framework also provides database specific interpretation for

range paging, view criteria, and effective dated attributes.

ViewObjectImpl: :bindParametersForCollection (QueryCollection
gc, Object[] params, PreparedStatement stm): This method binds
parameter values for the SQL statement at runtime. This includes bind
parameters appearing in the query statement as well as the range paging
parameters supplied by the framework.

ViewObjectImpl: :setResultSetForCollection (Object gc, ResultSet
rs): This method is responsible for storing results of query execution for
further processing. By default, the result set is stored in the corresponding
query collection object.

ViewObjectImpl: :hasNextForCollection (Object gc): This method is
invoked when a client starts to iterate over the rows set by calling hasNext ()
on the row set iterator. This method returns true if there are more rows in
the query result.

ViewObjectImpl: :createRowFromResultSet (Object igc, ResultSet
resultSet): This method creates a view row instance from the query result.
The new view rows are created when the client traverses through the

result set.

ViewObjectImpl: :releaseUserDataForCollection (Object gc, Object
data): This is a callback method which can be overridden to add some
resource cleanup. Runtime invokes this method when the query collection
object for the row set is garbage collected.

[179]

Advanced Concepts on Entity Objects and View Objects

Note that these methods are invoked in the same sequence as previously listed,
during the query execution of a view object.

Count queries in a view object

A view object also exposes APISs to find total records returned by the query. This is
used by many clients in different scenarios. For example, when a web page displays
data from a view object through a Ul table component, the table component may
issue a count query to size its scroll bar. The view object exposes multiple methods
for finding the row count. Let us take a quick look at these before winding up our
discussion on lifecycle methods for a view object.

* ViewObjectImpl::getRowCount (): This method fetches all the rows from
the database and then counts each row to find the total row count. This has
a performance overhead if the rows are large in number.

® ViewObjectImpl::getQueryHitCount (ViewRowSetImpl viewRowSet):
This method executes the count query on the database to return the row
count for each invocation by the client.

* ViewObjectImpl::getEstimatedRowCount (): This method finds the row
count by calling getQueryHitCount () for the first invocation. Once the row
count is read from the database, the framework keeps the estimated row
count up-to-date as rows are inserted and removed. So the second call from
the client does not result in a fresh database query. This is preferred over the
first two methods to find the total number of rows.

® ViewObjectImpl: :getCappedQueryHitCount (ViewRowSetImpl
viewRowSet, oracle.jbo.Row[] masterRows, long oldCap, long
cap) : The count query could be very expensive in some scenarios, for
example, if the number of records in the database is huge. This method
provides a cap argument to the count query so that the count query
generated at runtime has a special clause to limit the number of
rows scanned.

Building programmatically managed view
objects

If your view objects need to read data from a custom data source, and you still want
to leverage the declarative features offered by view objects then you can build a
programmatic view object by overriding the default lifecycle callback method for
populating the row set with data from the custom data source.

[180]

Chapter 5

To learn more about building programmatic view objects, refer to the
topic Using Programmatic View Objects for Alternative Data Sources in

N Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application

N Development Framework. To access the documentation go to http://

Q www.oracle.com/technetwork/developer-tools/jdev/
documentation/index.html and navigate to Oracle JDeveloper
and ADF Documentation Library | Fusion Developer's Guide. Use the
Search option to find specific topics.

To build a programmatic view object, you are supposed to override the following
lifecycle callback methods in the corresponding view object implementation

java class: executeQueryForCollection, hasNextForCollection,
createRowFromResultSet, getQueryHitCount, getCappedQueryHitCount, and
releaseUserDataForCollection. As we have discussed these methods in the last
section, we are not repeating the same here.

Working examples for the programmatic view object can be found in
the example code that we mentioned at the beginning of this book, in
the Preface section. To access the programmatic view object sample in
the example code, open the ADFDevGuideCh5HRModel workspace in
JDeveloper and look for Department ProgrammaticVo in the

M Model project.
Q Another example that uses a programmatic view object

backed up by a programmatic entity object can be found in the
ProgrammaticallyManagedBCSample folder. This uses a

simple Java class as the data source. To access the source, open the
ProgrammaticallyManagedBCSample workspace in JDeveloper
and look for ProgrammaticallyManagedEmployeeEO and
ProgrammaticallyManagedEmployeeVO in the Model project.

Intercepting query generation for view criteria

The view object allows you to hook custom codes to intercept the default query
generation logic at runtime for applied view criteria. There are multiple ways to
hook your query customization logic, as follows:

* Using a custom view criteria adapter for the view object

* Overriding getViewCriteriaClause (boolean forQuery) Or getCriteri
altemClause (ViewCriteriaItem vci) in the view object implementation
class

[181]

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

Advanced Concepts on Entity Objects and View Objects

Let us take a closer look at these techniques.

Using a custom view criteria adapter

You may use this feature to override the default SQL WHERE clause generation

logic provided by the framework for the view criteria applied on a view object.
When you execute a view object after applying one or more view criteria, the
framework uses oracle.jbo.server.CriteriaAdapterImpl to interpret the
applied view criteria and convert them to WHERE clauses at runtime. You can subclass
CriteriaAdapterImpl to return a customized WHERE clause. The following code
snippet illustrates a custom CustomCriteriaAdapter implementation. This example
generates a special WHERE clause fragment for view criteria with the name INTERNAL_
SECURITY_VC. This approach is commonly used for adding custom security clauses
to the view objects.

//Custom CriteriaAdapter implementation
public class CustomCriteriaAdapterImpl extends
CriteriaAdapterImpl implements CriteriaAdapter {

@Override

public String getCriteriaClause (ViewCriteria criteria) {
String clause = super.getCriteriaClause(criteria) ;
String vcName = criteria.getName () ;

//INTERNAL SECURITY VC' is a custom marker VC
//without any rows

//This method generates 'l<>1' clause if the user
//is not logged in and '1l=1' in all other cases
if (vcName.startsWith ("INTERNAL SECURITY VC") &&

lcriteria.isCriteriaForRowMatch()) {
String secPredicate = getDataSecurityWhereClause
(criteria) ;

return secPredicate;

}

return clause;

private String getDataSecurityWhereClause (ViewCriteria criteria) {
if (ADFContext.getCurrent () .
getSecurityContext () .isAuthenticated())
return "1 = 1";
else
return "1 <> 1";

[182]

Chapter 5

To return your own oracle. jbo .CriteriaAdapter implementation,
override the getCriteriaAdapter () method in the view object
implementation class and return the desired CriteriaAdapter
implementation as shown in the following example:

//In view object implementation class

@Override
public CriteriaAdapter getCriteriaAdapter() ({

~
Q // CustomCriteriaAdapterImpl extends

CriteriaAdapterImpl

CustomCriteriaAdapterImpl customCriteriaAdapterImpl =
new CustomCriteriaAdapterImpl () ;

return customCriteriaAdapterImpl;

}

To globally replace the default view criteria adapter, set the configuration
property, jbo.ViewCriteriaAdapter, to the fully-qualified class name
of your oracle.jbo .CriteriaAdapter implementation class. This is
configured either through your application module configuration or as a
Java system parameter.

Overriding getViewCriteriaClause(boolean
forQuery) in the view object implementation class

This method builds the WHERE clause expression from the applied view criteria before

executing the query. You may override this method if you want to alter the default
query generation for a specific view object.

The following example overrides getViewCriteriaClause to set the Uppercolumns
flag for all view criteria that are applied on a view object. If this flag is true, the
UPPER SQL operator will be applied to all CHAR/VARCHAR columns when the SQL
WHERE clause is generated.

//In view object implementation class
/**
* getViewCriteriaClause will be invoked for both database
* query and in memory query mode. While overriding
* developer will need to take care of this point.
*/
@Override
public String getViewCriteriaClause (boolean forQuery) {

//Identifies the applied view criteria for the current

[183]

Advanced Concepts on Entity Objects and View Objects

//execution mode and call setUpperColumns on each VC
ViewCriterial[] vecs =
getApplyViewCriterias (forQuery ? ViewCriteria.CRITERIA MODE QUERY
ViewCriteria.CRITERIA MODE_ CACHE) ;
if (ves != null && vecs.length > 0)
for (ViewCriteria vc : vecs)
if (!vc.isUpperColumns()) {
vc.setUpperColumns (true) ;

}
}

} return super.getViewCriteriaClause (forQuery) ;

Overriding getCriterialtemClause(ViewCriterialtem
vci) in the view object implementation class

This method gets engaged when the framework tries to interpret each view criteria
item present in the view criteria for building the wHERE clause fragments. This
method can be overridden to return the custom WHERE clause fragments for a
specific ViewCriteriaItem.

The following example overrides getCriteriaItemClause () for generating a
special WHERE clause fragment for the DepartmentName view criteria item present
in the Departmentvc view criteria. The overridden method returns matching
department rows as well as rows with null department names. The WHERE clause
returned by this method looks like the following;:

((DeptEO.DEPARTMENT NAME = :bindVarDeptNames) OR (DeptEO.
DEPARTMENT NAME IS NULL))

//In the view object implementation class
/**

* getCriterialtemClause is invoked for both database query
* and in memory query mode. While overriding developer

* will need to take care of this point.

*/

@Override
public String getCriterialtemClause (ViewCriterialtem vci) {
// This method generates custom WHERE clause for search
// on DepartmentName to return the matching columns as well
// NULL columns
if (vci.getAttributeDef () .getName () .
equals ("DepartmentName") &&
vci.getViewCriteria () .getName () .

[184]

Chapter 5

contains ("DepartmentVC") &&
hasBindVarValue (vci.getViewCriteria(),
"bindVarDeptNames")) {

String attrName = null;

//Handle database query and in-memory query separately
if (vci.getViewCriteria().isCriteriaForQuery())

return getItemClauseForDatabaseUse (vci) ;
} else {

return getItemClauseForInMemoryUse (vci) ;

}

return super.getCriterialtemClause (vci) ;

/**
* Custom WHERE clause fragment for database query
*/
protected String getItemClauseForDatabaseUse (ViewCriterialtem vci)
String attrName = this.getEntityDef (0) .getAliasName () +
" .DEPARTMENT NAME";

return " ((" + attrName + " = :bindVarDeptNames) OR (" + attrName +
" IS NULL))";

}

protected String getItemClauseForInMemoryUse (ViewCriterialtem vci)
String attrName = "DepartmentName";

return " ((" + attrName + " = :bindVarDeptNames) OR (" + attrName +
" IS NULL))";

}

/**
* Custom WHERE clause fragment for in-memory query
*/
private boolean hasBindVarValue (ViewCriteria vc, String varName) {
VariableValueManager varValueMgr = vc.
ensureVariableManager () ;
return varValueMgr.hasVariableValue (varName) ;

[185]

Advanced Concepts on Entity Objects and View Objects

Tips on overriding getViewCriteriaClause()
and getCriterialtemClause() in the view object
implementation

The following tips may prove helpful when overriding getvViewCriteriaClause ()
and getCriterialtemClause () in a view object implementation:

The view criteria callbacks getCriteriaItemClause and
getViewCriteriaClause will be invoked only when the framework tries

to build the wHERE clause for the very first execution of the query, or when
the view criteria structure changes later which may affect the wHERE clause
fragments. In all other cases, the framework reuses the already built WHERE
clause. If you need to trigger the custom logic for each query execution, then
hook your code by overriding prepareRowSetForQuery () in the view object
implementation class. This is explained in the next section.

When you override getCriteriaItemClause () and
getViewCriteriaClause (), make sure the overridden method has logic

for handling both the query on the database as well as in-memory. When a
transient criteria item is present in the view criteria, the binding layer sets the
criteria mode to both database and in-memory. When the model layer builds
the clause, it does two passes, first as database and then as in-memory. The
in-memory clause is evaluated after the rows are fetched. If the overridden
method returns null or does not handle the in-memory filtering properly,
then the rows fetched from first pass are disqualified and removed from the
row set.

When you check for specific view criteria names from these methods,

check if the view criteria name contains a specific name (e.g if (vcName.
contains ("SomeVCName")) {...})instead of applying an equality check.
This is because when a view criteria is used for LOV filtering or in other
internal processes, the framework creates a copy of the view criteria and

sets a unique name by prefixing an internal text along with the criteria name.
The previous suggestion will make your logic work in all scenarios.

Customizing the query at runtime

In the previous section, we have discussed various methods to customize the query
generation for the view criteria applied on a view object. What if you want to alter
the query or supply bind variable values at runtime for every query execution,
irrespective of the applied view criteria. In this section, we will explore a couple

of solutions for such scenarios.

[186]

Chapter 5

Customizing the query for a row set

You can override prepareRowSetForQuery (ViewRowSet Impl vrs) in the view
object implementation class to dynamically alter the query for a row set. This
method is invoked when a client calls executeQuery () and count queries such as
getQueryHitCount () and getCappedQueryHitCount () on a row set. This method
can be overridden to programmatically assign bind variable values or to modify the
WHERE clause, right before the query execution.

In the following example, we are setting the value for a bind variable value
:bindvarDeptId if the query is executed for default row set of a view object.

//In view object implementation
public void prepareRowSetForQuery (ViewRowSetImpl vrs)
//Set the value for bind variable ':bindVarDeptId' only
//for default row set
if (vrs.isDefaultRowSet ()) {
vrs.setNamedWhereClauseParam("bindVarDeptId", getUserDeptId()) ;

}

super.prepareRowSetForQuery (vrs) ;

Customizing the query for a view object

In previous section, we were talking about API for customizing the query for a
specific row set in a view object. What if you want to alter the query at view object
level so that changes would be available for all containing row sets? This section
answers this question.

You can override the preparevoForQuery () in the view object implementation class
to dynamically alter the query set on a view object. This method is invoked during
the query execution lifecycle of a view object. More precisely, this is called from the
prepareRowSetForQuery () method that we discussed in the previous section.

Override this method to assign bind variable values or to modify the WHERE clause
for a view object right on the fly just before the query execution. Note that when you
alter the query for the view object instance, it will affect all containing row sets.

The following example appends the view criteria with the name L.oc_CRITERIA to
the view object on the fly in order to retrieve departments belonging to the logged-in
user's location.

//In view object implementation class
@Override
public void prepareVOForQuery () {

[187]

Advanced Concepts on Entity Objects and View Objects

super .prepareVOForQuery () ;
//Check if the LOC CRITERIA is already applied on the VO
//If yes, returns from this method
String[] vcnames = getViewCriteriaManager () .
getApplyViewCriteriaNames () ;
if (vcnames != null) {
for (String name : vcnames) {
if (name.eqguals ("LOC_CRITERIA"))
return;

}
}
}

// The following code create LOC_CRITERIA
//and applies it to the VO.
//This view criteria hold a condition to read
//department rows from logged-in user's location
ViewCriteria vc = createViewCriterial() ;
vec.setName ("LOC_CRITERIA") ;
ve.setConjunction (ViewCriteria.VC_CONJ AND) ;
ViewCriteriaRow vcr = vc.createViewCriteriaRow () ;
vc.insertRow (ver) ;
ViewCriteriaIltem vci =
ver.ensureCriterialtem("LocationId") ;
vci.setOperator ("=") ;
ViewCriteriaItemValue vciv = vci.getValues() .get (0);
//getLoggedInLocId() returns logged in user's location
vciv.setValue (getLoggedInLocId()) ;
applyViewCriteria(vc, true);

Passing parameters to a SQL IN clause using
oracle.jbo.domain.Array

Oracle ADF Business Components support passing arguments to a SQL 1N clause
using the oracle.jbo.domain.Array domain type. Of course, you can build the
IN clause dynamically with comma delimited arguments. However, this is not
considered as best practice from the performance angle. Passing values through

a bind parameter improves the performance of query execution by avoiding the
repeated parsing of the SQL. Let us explore a couple of implementations where
oracle.jbo.domain.Array is used for passing multiple arguments to an IN clause.

[188]

Chapter 5

Using oracle.jpo.domain.Array as a
NamedWhereClauseParam value

The following example illustrates the usage of oracle.jbo.domain.Array for
passing the parameter values to a SQL IN clause present in a SELECT statement.
While initializing a bind variable of type oracle.jbo.Array, it is required to set up
the proper context for the Array object that you are supplying as a value. Specifically,
you must describe the column type and element type for the Array object when it is
used as a bind variable value. The following are the details:

* The column type represents the database object name used for holding
values from oracle. jbo.Array. Typically this would be a database table
object. An example is given as follows:

CREATE OR REPLACE TYPE "CHARTABLETYPE" AS TABLE OF VARCHAR2
(4000) ;

* The element type represents the data type for Array members.

The following code method defined in an application module implementation
illustrates the usage of oracle.jbo.Array as a bind variable value. The method
findDepartmentsForDepartmentNames (. .) used in this example appends SQL's
WHERE clause that takes an Array typed named parameter to department view
object. The Array object is used for passing departments' names to the query. You
may also notice the code for setting context for the Array object in the method
getValueAsArray():

//In view object implementation class

/**
* Finds the department rows for array of department names
* @param deptNamesArray
*/
public void findDepartmentsForDepartmnetNames (String[] deptNamesArray)
{
ViewObjectImpl deptVOImpl = getDepartments() ;
//Define named parameter
deptVOImpl.defineNamedWhereClauseParam("ArrayOfDeptNames", null,
null) ;
//Set the Where clause that takes 'Array' typed
//named parameter
deptVOImpl.setWhereClause ("DepartmentEO.DEPARTMENT NAME MEMBER OF
CAST (:ArrayOfDeptNames AS CHARTABLETYPE)") ;
//Set the parameter value
deptVOImpl.setNamedWhereClauseParam ("ArrayOfDeptNames", getValueAsAr
ray (deptNamesArray)) ;

[189]

Advanced Concepts on Entity Objects and View Objects

deptVOImpl.executeQuery () ;

}
/**

* This method converts string array to
* oracle.jbo.domain.Array
* @param deptArray
* @return
*/
public Array getValueAsArray (String[] deptArray) {
Array arr = null;

try {

arr = new Array (deptArray) ;

HashMap context = new HashMap () ;
//CHARTABLETYPE is DB object table of varchar2(4000)
context.put (DomainContext.ELEMENT SQL NAME,

"CHARTABLETYPE") ;
context.put (DomainContext.ELEMENT TYPE, String.class);
arr.setContext (null, null, context);
} catch (Exception ex) ({
ex.printStackTrace () ;

}

return arr;

}

Using oracle.jpo.domain.Array as a bind variable
value for a view criteria item

The bind variable of type oracle.jbo.domain.Array can be used along with a
view criteria item from a view criteria for passing multiple parameter values to the
SQL wHERE clause fragments generated at runtime. However, as the usage of the
Array object is not generic by nature, the default WHERE clause fragment generated
by the framework for a view criteria item might not meet our requirement. Now, the
solution is to override the default logic for generating a SQL WHERE clause fragment
for a view criteria item by subclassing the view object implementation class.

To use the oracle.jbo.domain.Array parameter type for a view criteria item, you
will need to perform the following steps on the view object:

1. Define a bind variable of the type oracle.jbo.domain.Array. When
defining a bind variable, select the type as Array. In the property inspector
window, set Column Type as the database object name that you defined for
holding values from oracle.jbo.Array, and Element Type as the item
type that you store in the Array object. The following screenshot displays
this setting:

[190]

Chapter 5

I@'I:.!inc.lll'ar.ﬂurrmu'OFDleptNamnes - Property Insp... * E]

M1 Q Find @
-1 Type
o Name *; |bindVarArrayOFDepWames |
o Type = |.f-\rray |-
Value Serializer Class: | | w
+ Value

+ Control Hints

-] Other

o ColumnType: [CHARTABLETYPE [~
ElemType: | | w

+ UI Hints

The CHARTABLETYPE used in this example is defined in the database
as follows:

CREATE OR REPLACE TYPE "CHARTABLETYPE" AS TABLE OF
VARCHAR2 (4000) ;

Create or edit the view criteria and specify the Array type bind variable
as parameter for the desired view criteria item which is supposed to take
multiple parameter values.

Generate the view object implementation Java class for the view object, if it
does not exist. Open the view object implementation class and override the
getCriterialtemClause (ViewCriteriaItem vci) method to return the
customized WHERE clause fragment which takes an Array typed bind variable
as discussed in the following example.

The following example illustrates the usage of an Array typed bind variable
parameter bindvVarArrayOfDeptNames to pass the array of string values to
the WHERE clause fragment for the criteria item DepartmentName.

//In view object implementation class
/**
* Interpret the given ViewCriterialtem and generate
* a where clause fragment that takes Array typed bindvariable
* @param vci
* @return
*/
@Override
public String getCriterialtemClause (ViewCriterialtem vci)
//Check for view criteria and view criteria item that needs
//special treatment to handle Array typed bind variable

[191]

Advanced Concepts on Entity Objects and View Objects

if (vci.getAttributeDef ().
getName () .equals ("DepartmentName") &&
vci.getViewCriteria () .getName () .
contains ("DepartmentVC")) {
//Handle database query and in-memory query separately
if (vci.getViewCriteria() .
getRootViewCriteria() .isCriteriaForQuery())
return getINClauseForDatabaseUse (vci) ;
} else {
return getINClauseForCache (vci) ;
}

} else {
return super.getCriterialtemClause (vci) ;

/**
* Generates WHERE clause with Array for database query
* @param vci
* @return
*/

protected String getINClauseForDatabaseUse (ViewCriterialtem vci)

String whereCluase = "1=1";
if (getbindVarArrayOfDeptNames () != null)
whereCluase =

this.getEntityDef (0) .getAliasName ()
+ " .DEPARTMENT NAME MEMBER OF "
+ "CAST (:bindVarArrayOfDeptNames AS CHARTABLETYPE)";

}

return whereCluase;

/**
* Generates search clause for in memory query
* @param vci
* @return
*/
protected String getINClauseForCache (ViewCriterialtem vci)
String whereCluase = "1=1";
return whereCluase;

[192]

Chapter 5

/**
* Returns the variable value for bindVarArrayOfDeptNames.
* return variable value for bindVarArrayOfDeptNames
*/
public Array getbindVarArrayOfDeptNames () {
return (Array)ensureVariableManager () .
getVariableValue ("bindVarArrayOfDeptNames") ;

}

The following method defined in an application module implementation
illustrates how a client can use the view criteria that we defined in the
previous example to filter rows returned by a view object:

//In application module implementation class
/**

* Finds the department rows using VC for array of department

* names

* @param deptNamesArray

*/
public void findDepartmentsForDepartmnetNamesUsingVC (Stringl]
deptNamesArray) {

ViewObjectImpl deptVOImpl = getDepartments() ;

ViewCriteria deptVC = deptVOImpl.getViewCriteria ("Department
vC") ;

VariableValueManager vvm = deptVC.ensureVariableManager () ;
//The source for method getValueAsArray() is available

//in the previous example under 'Using oracle.jbo.domain.Array //
as a NamedWhereClauseParam value'

Array arr = getValueAsArray (new

String[] {"Administration", "Marketing"}) ;
vvm.setVariableValue ("bindVarArrayOfDeptNames", arr) ;
deptVOImpl.applyViewCriteria (deptVCQC) ;
deptVOImpl.executeQuery () ;

Defining a cascading list of values

We have learned the basic lessons on list of values (LOV) in Chapter 4, Introducing
View Objects. While discussing the basics in the previous chapter, we deferred a
couple of advanced concepts on LOV. It is time for us to explore them in detail.

[193]

Advanced Concepts on Entity Objects and View Objects

In some scenarios, the list of values displayed for an LOV enabled attribute may
change with the value specified for one or more attributes on the same row. In other
words, the LOV needs to be refreshed whenever the value for dependency attributes
change. The ADF Business Component framework supports such LOV definitions
through a special type known as the Cascading (or Dependent) LOV.

Let us take an example to understand this concept better. Suppose you are working
on a data model as shown in the following diagram:

=] com.packtpub.adfguide.ch5.model.view =] com.packtpub.adfguide.ch5.model.view
CountryVO RegionalOfficeVO

Countryld : String Branchld : Integer
CountryName : String BranchName : String
Regionld : Integer Regionld : Integer

>(Countryld : String

0..1x

CountryEQ RegionalOfficeEQ

In this example, the regional office view object (RegionalOfficeVO) contains
information about the branches in a country, and the country view object
(CountryVO) stores a list of country names along with the region where each
country belongs to. The use case requirement is to enable LOV for the Countryid
attribute. This can be achieved by using CountryVO as the data source for the LOV
and then following the normal LOV dentition technique that we learned in Chapter
4, Introducing View Objects. What if the customer wants to filter the CountryName
attribute displayed in the LOV based on the Regionld attribute? In other words

the country LOV UI components need to display countries belonging to a specific
region alone at runtime. We may need to go for the dependent LOV technique for
such cases. Let us see how to implement this in our example. In this example we will
enable the region dependent LOV for the column Countryld in RegionOfficeVO.
The initial steps for defining the cascading LOV are the same as for defining a normal
LOV. We need to decide on the data source for the LOV, which is CountryVO in this
example. The LOV enabled for Countryld in RegionOfficeVO is expected to display
only those countries belonging to a specific region. We need to add a named view
criteria on the LOV source view object as the next step to filter country details based
on the RegionlId set for the row.

To define the named view criteria on CountryVO, perform the following steps:

1. Double-click on the CountryVO view object to display the overview editor.
In the overview editor, select the Query tab and click on the green plus icon
to create new view criteria.

2. In the Create View Criteria dialog window, enter the view criteria name and
then click on the Add Item button.

[194]

Chapter 5

In the Criteria Item section, select the Regionld attribute and then select
Bind Variable as the value for the operand field. To define a bind variable
click on the green plus icon next to the Parameter field. In the Bind Variable
window, enter the name and type for the bind variable. Once you finish
defining the bind variable, the Create View Criteria window may look like
the following screenshot. Click on OK to save changes.

—» Create View Criteria @

Criteria Mame: |CountryByRgionVC | Query Execution Mode: |Dambase '|

Criteria Definiion UI Hints

View Criteria: View Object Where Clause:
5 CountryVOCriteria { (CountryEQ,REGION_ID = :bindVarRegionId })
E|{] Group

iR egionld = :hindvarRegionId

Add [tem Delete Explain Plan... Test
Criteria Item
Attribute: |RegionId v| Ignore Null Values
Operator: |Equals -| Validation: |Opﬁonal ol
Operand: |Bind Variable il |
Parameter: |bind\-‘arRegionId '| *
Help oK Cancel

We have now added the required search condition on the data source view object.
Next is to use this view object to enable the LOV on the Countryld attribute in
RegionalOfficeVO.

To enable the cascading LOV for Countryld in RegionalOfficeVO, perform the
following steps:

1.

Double-click on RegionalOfficeVO to display the overview editor. In the
overview editor, select the Countryld attribute, the attribute on which you
want to enable the LOV, and then select the List of Values tab.

Click on the green plus icon displayed in the toolbar section of the List of
Values table to add the LOV. In the Create List of Values dialog window,
enter the List of Values Name and then proceed to define a data source
for the LOV.

[195]

Advanced Concepts on Entity Objects and View Objects

3. To link the data source for the LOV, click on the green plus icon button
next to the List Data Source drop-down list. In the View Accessor dialog
window, select the source view object for the LOV and shuttle that to the
View Accessors list displayed on the right. In our example, we will select

CountryVO and shuttle that to the right. The basic view accessor is in place,

but this is not enough for us to define the cascading or dependent LOV.
In our example, the LOV is supposed to display the list of countries for
a specific region in a row. For this, we may need to add an appropriate

filtering condition on the view accessor.

4. To add this filtering condition, select the newly added view accessor in
the View Accessor window and click on the Edit button. In the Edit View

Accessor dialog window, select the named view criteria that you defined on
CountryVO to filter the country list and shuttle that to the Selected list. The
Bind Parameter Values section displays the bind parameter that you defined
for the data source view object. Select the bind parameter used in the selected

view criteria and click on the Value column. The value column displays a
drop-down list with a list of attributes from the base view object. As we are
planning to filter the LOV based on Regionld for a row, select Regionld

from the attribute list. This is shown in the following screenshot:

=~ Edit View Accessor: CountryVA

Q, Search View Object
I View Object
Configure the view object query for this accessor.
...... Tunlng

View Criteria

Select the view criteria that you want to apply to this view object. If you select multiple view criteria, they will be

combined with an AND operator,

Available: Selected:

B CountryByRgionVC
9
Bind Parameter Values
Provide values for any bind parameters defined for this query.
Parameter Type Value
bindvarRegionId java.lang.Integer Regionld
Order By: Edit...
Help Apply oK Cancel

[196]

Chapter 5

5. Click on OK to save and dispose the window. Click on OK in the View
Accessor dialog window to save the definition. Now we are back on the
Create List of Values dialog window. The rest of the steps are the same as
for defining a normal LOV.

6. In the Create List of Values dialog window, expand the List Data Source and
select the view accessor you created. Then select the List Attribute (list return
value) from the LOV data source view object. This value will be copied to an
LOV enabled attribute on the base view object upon selecting the value from
the LOV at runtime. If the attribute names are the same in the LOV source
view object and base view object, then the editor creates a default mapping
between them. You can add more return values mapping between attributes
in the base view object and the LOV data source view object by clicking on the
green plus icon displayed in the List Return Values table.

7. To choose the LOV display type, click on the UI Hints tab and then select
the Default List Type. You can optionally configure other properties which
may affect the LOV display at runtime. Click on OK to save and dispose off
the dialog.

8. Once you defined a cascading LOV, you will have to tell the framework
when the LOV needs to be refreshed, apart from its default execution. In
our example, the LOV query needs to be fired whenever the RegionId
changes. To achieve this, select the Attributes tab in the overview editor for
RegionalOfficeVO and then select the attribute for which a cascading LOV is
defined. And then go to the Dependencies tab and shuttle the attribute that
drives the values displayed in LOV and shuttle that to the Selected list. To
display the countries for a selected Regionld, we need to shuttle Regionld to
the Selected list.

Switching the LOV at runtime

In the last section we discussed the dependent LOV, where the list of values
refreshes for each row in the collection depending upon the dependent attribute
values. We are continuing our discussion on LOV with a different use case in this
section. There are some business cases where you may need to dynamically switch
the data source (source view object) used for the LOV based on specific conditions.
For example, consider an employee data capture UI which displays employee
attributes such as first name and salary, and department. The LOV is enabled for the
department. The business requirement is that depending on the logged-in user role,
LOV should query different database tables to display the departments. Oracle ADF
supports such use case scenarios by allowing you to define multiple LOVs for an
attribute. The framework uses a switcher attribute to decide the ID of the LOV that
needs to be shown at runtime. Typically a transient attribute is marked as the LOV
switcher, whose value is evaluated to one of the LOV IDs defined on the attribute.

[197]

Advanced Concepts on Entity Objects and View Objects

The following are the high-level steps for enabling multiple LOVs on an attribute in a
view object:

1.

Open up the desired view object in the overview editor. Go to the Attributes
page and select the attribute on which you want to define multiple LOVs.

Select the List of Values tab. Now you can add multiple LOVs (as required
by your business use case) for the selected attribute by clicking on the green
plus icon displayed on the toolbar section of the List of Values table. We are
not repeating the steps for defining the LOV in this section. If you need a
quick brush up, refer back to the topic Configuring Lists of Values in Chapter 4,
Introducing View Objects. When you add a second LOV, you may notice two
drop-down lists in the screen, namely List Type UI Hint and List of Values
Switcher. Select the desired UI hints for the LOV using List Type UI Hint.
Do not select List of Values Switcher during this step; we will revisit

this screen after defining a transient attribute, which is explained in the
following steps.

Now you may need to help the framework by providing logic for choosing
the appropriate LOV at runtime. The framework chooses the LOV ID by
evaluating a transient attribute (which needs to be marked as the LOV
switcher) present on the row.

To define a transient attribute, select the Attributes tab in the overview editor
for a view object and click on the green plus icon to add new attributes.

Make sure the Transient radio button is selected for the new attribute in its
Details tab. In the property inspector, expand the Value section and select
Value type as Expression and then enter the Groovy expression which
evaluates to the LOV ID to be used at runtime. For example, suppose that

the LOV IDs defined for the departmentId attribute are AdminDeptLOV
and GenericDeptLOV. The following Groovy expression returns
AdminDeptLOV if the logged in user belongs to the Admin group,

and GenericDeptLOV in all other cases.

securityContext.userInRole['Admin'] ?"AdminDeptLOV" :
"GenericDeptLOV"

The last step is to mark the transient attribute that you defined in the
previous step as an LOV switcher. To do this, select the multiple LOV
enabled attribute in the Attributes table and choose the List of Values
tab. Click on the List of Values Switcher drop-down and then select the
appropriate transient attribute that you defined in step 4.

[198]

Chapter 5

Reading and writing XML data

The ADF view object has support for writing queried data into XML format and
for reading XML documents in order to apply changes to data. You will be using
writeXML () and readxML () methods defined on the view object implementation
class for the purpose of achieving the previously mentioned functionalities.

* writeXML(): This produces an XML document for rows in a view object
row set. You may use this API to export data from the database in the
XML format in a language-neutral way for use by third party systems.

* readxML(): This processes all rows from an incoming XML document.
This is useful to update the data with an incoming XML document.

To learn more about presenting data using XML, see the topic Reading
and Writing XML in Oracle Fusion Middleware Fusion Developer's Guide for
M Oracle Application Development Framework. To access the documentation
<:Zl gotohttp://www.oracle.com/technetwork/developer-tools/
jdev/documentation/index.html and choose Oracle JDeveloper
and ADF Documentation Library | Fusion Developer's Guide. Use the
Search option to find specific topics.

The following examples illustrate the usage of readxML () and writexML () methods
on a view object and on a row in a view object.

* Using writeXML () on a row object: This example finds the row with
departmentId = 10 and writes the contents of the row into XML by calling
writeXML (depthCount, options) on the oracle.jbo.Row object. The
depthCount parameter in the writexML () call represents what level system
should traverse the rows in the view object hierarchy while creating the
node structure. For example, depthCount = -1 indicates that the row
object should render all child rows by traversing all the view links.

public void writeAllRowsAsXML (ApplicationModule am) throws
IOException {

ViewObject vo = am.findViewObject ("Departments") ;

//Find the department row with Key=10

Key k = new Key(new Object[] { 10 });

Row deptRow = vo.findByKey(k, 1) [0];

//Traverse all view links and produce XML for all

//child rows

Node node = deptRow.writeXML (-1, XMLInterface.XML_OPT_ALL_ROWS) ;
//Print the XML

((XMLNode) node) .print (System.out) ;

}

[199]

Advanced Concepts on Entity Objects and View Objects

Using writeXML () on a view object: This example renders all rows from a
view object in XML by calling writeXML () on the view object. The usage is
the same as that we discussed for a view row.

While writing rows into XML, you can refine the rows by supplying a hash
map that contains the names of the desired view object and its attributes.
In this case, the framework will export only those rows that match the
supplied view object names and attributes. You will use the overridden
writeXML (long options, HashMap voAttrRules) API for such cases.
An example is as follows:

public void writeSelectiveRowsAsXML (ApplicationModule am) throws
IOException {

ViewObject vo = am.findViewObject ("Departments") ;
//Render only those view objects and attributes
//present in the viewDefMap
HashMap viewDefMap = new HashMap() ;
viewDefMap.put ("model.view.DepartmentVvo",

new String[] { "DepartmentId", "DepartmentName" });
Node node = vo.writeXML (-1, viewDefMap) ;
//Print the XML
((XMLNode) node) .print (System.out) ;

}

Using readxML () on a view object: You can call the readxML () APl on a
view object class to read in the data from the incoming XML. When you
call readxML () on a view object passing an XML filename, the framework
will read the XML content and will take the following actions for each node
present in the XML:

° Update existing view rows attribute values from XML.

° Create a new row, if the row that you supplied in the XML has not
been retrieved by calling findByKey (). If the primary key for the
new row is populated using DB Sequence or Groovy expression,
remove that attribute from the XML. ADF runtime will take care of
populating these attribute values.

° Deletes the view row if the corresponding XML element has bc47 -
action='remove'

[200]

Chapter 5

For example consider the following input XML file that contains the Department
and Employee details. The Department view object is linked to the Employee view
object through the view link accessor, and EmployeeVO is the name of the accessor
attribute. The readxML () API on the view object expects input XML format in the
same format as that produced by a call to writeXML () on the same view object.

<?xml version="1.0" encoding="windows-1252" ?>
<DepartmentVvVoO>
<DepartmentVORow>
<!--Update the DepartmentName to Marketing, Id=10 is in DB -->
<DepartmentId>10</DepartmentId>
<DepartmentName>Marketing</DepartmentName>
<ManagerId>200</ManagerId>
<LocationId>1800</LocationId>
<EmployeeVO>
<EmployeeVORow>
<!--Add a new employee row, Id=1001 is not in DB ->
<EmployeeId>1001</EmployeeId>
<FirstName>Jobinesh</FirstName>
<LastName>Purushothaman</LastName>
<Email>jobineshegmail.com</Email>
<HireDate>2010-05-14</HireDate>
<JobId>AD ASST</JobId>
<ManagerId>200</ManagerId>
<DepartmentId>10</DepartmentId>
</EmployeeVORowW>
</EmployeeVO>
</Department VORow>

<DepartmentVORow bc4j-action='remove'> <!-- Remove the row for
DepartmentId= 40 -->

<DepartmentId>40</DepartmentId>
</Department VORow>

You can input this XML to the readxML () API on a view object to apply changes
to the appropriate rows in the view object. The following method illustrates
this feature:

/**
* This method reads rows from XML
*/
public void readRowsFromXML (ApplicationModule am) throws IOException

ViewObject vo = am.findViewObject ("Departments") ;

try {
//Perform insert, update, delete based on the data read

[201]

Advanced Concepts on Entity Objects and View Objects

//from dept.xml. The dept.xmlis given at the beginning
//of this example.
Element xmlToRead = getInsertUpdateDeleteXMLGram

("dept .xml") ;
vo.readXML (xmlToRead, -1);
} catch (Exception ex) ({
//Handle Exception
ex.printStackTrace () ;
}
}
/**
* Helper method for reading XML data
*/

private Element getInsertUpdateDeleteXMLGram(String xmlurl) throws
XMLParseException, SAXException, IOException
URL xmlURL = CRUDXMLTestClient.class.getResource (xmlurl) ;
DOMParser dp = new DOMParser() ;
dp.parse (xmlURL) ;
return dp.getDocument () .getDocumentElement () ;

}

Advanced data type techniques

We have discussed the common data types used by business components in Chapter
3, Entity Objects, under the section Attribute types. Apart from the out of the box data
types, ADF allows you to define custom data types to handle custom object types
used in the database or to extend the functionalities provided by existing data types.
In this section, we will discuss ADF support for building custom data types, and then
we will discuss some special data types such as the Binary Large Object (BLOB) and
the Character Large Object (CLOB) which may require a special mention on

their usage.

Building custom data types using domain
type

ADF allows you to customize the data types used for attributes in a business
component by defining custom domain types. You can either extend the existing
data types such as String, Integer, and Date, or build new domain types to
represent a custom data structure such as Oracle Object type used in the database.

[202]

Chapter 5

M Oracle object types are user-defined types which consist of one or more
Q basic types. It provides higher-level ways to organize and access data in
the database.

Let us define a domain type for a custom Oracle object type. The object type used in
this example is as follows:

CREATE OR REPLACE TYPE ADDRESS DETAIL AS OBJECT (CITY
VARCHAR2 (100), COUNTRY VARCHAR2 (100)) ;

Once you defined the previously mentioned object type in the database, you will
need to build a custom domain type to use the same from business components.

To define a domain type for the ADDRESS_DETAIL object type, perform the
following steps:

1. Right-click on the Model project and select New Domain.

2. In the Create Domain dialog window, enter the domain name and package.
As we are building a domain for the oracle object type, select Domain for an
Oracle Object Type option. From the Available Types list, select the desired
object type. In this example, we will select the ADDRESS_DETAIL object
which is present in the database.

3. Continue the wizard. The Settings page will allow you to modify the
attribute definitions, if required. This example does not need any change in
the system generates properties. Click on Finish.

When you finish generating the domain type, JDeveloper will create an XML
definition to hold the metadata for the domain type and a corresponding Java class.

Later when you generate business components by selecting a database table which
uses ADDRESS_DETAIL as one of the columns, JDeveloper will automatically map the
ADDRESS_DETAIL column type to the custom domain Java type that you defined.

You can even set the attribute types of entity objects or view objects explicitly to
the custom domain you generated. To do this, select the desired attribute in the
Attributes tab for an entity object or view object, and then select the desired
Type in the property inspector.

To display the attributes which use custom domain types in the ADF
M Faces pages, you will need to create custom JSF converters. This
Q takes care of the encoding and decoding of the domain type when
displayed in UI. We will cover this topic in Chapter 8, Building Data
Bound Web User Interfaces.

[203]

Advanced Concepts on Entity Objects and View Objects

Working with BLOB and CLOB data types

The BLOB data type is used for storing large binary data, in a database table, such
as images, audio, or other multimedia objects. The CLOB data type is used to store
large texts with a special sense to handle the character set used for the text. If an
application uses Oracle database, then ADF Business Components can use oracle.
jbo.domain.BlobDomain and oracle.jbo.domain.ClobDomain data types to
represent BLOB and CLOB types in the middle tier. In this section, we will explore
examples on updating BLOB and CLOB columns.

The following example demonstrates the usage of oracle.jbo.domain.ClobDomain
for inserting large text files into the database table through the FileStorageVO view
object. This example uses the following entity and view objects:

* FileStorageEO: This is the entity object used in this example for uploading
binary content to the database. The FileContent attribute as the name
suggest stores the contents of the file and is of the type oracle.jbo.domain.
ClobDomain.

* FileStorageVO: This is a view object backed up by FileStorageEO.

1

Field : DBSequence

FileName : String
FileContent : ClobDomain
CreatedOn : Timestamp

-

The following code snippet illustrates the APIs to be used for creating clobDomain
from java.io.InputStream. Note that, in real life implementation, code for
creating clobDomain should ideally be placed in the client tier (for example,
managed bean in JSF), and you can pass the ClobDomain object to the appropriate
application module method for inserting into a database. To keep things simple,
this example creates the ClobDomin in the application module itself. The method
demoCLOBInsert () takes the filename and InputStream as a parameter which is
used for creating a C1lobDomain object.

//In application module implementation class

public class HRServiceAppModuleImpl extends
ApplicationModuleImpl implements HRServiceAppModule{

// Other AM methods go here...

/**

[204]

Chapter 5

* This method inserts file content in to DB using

* ClobDomain

* @param filename

* @param fileInputStream

*/

public void demoCLOBInsert (String filename, InputStream
fileInputStream) {
try {
//Get the view object
ViewObjectImpl fileStrorages = getFilesStorageVO() ;
FileStorageVORowImpl newRow =
(FileStorageVORowImpl) fileStrorages.createRow () ;
fileStrorages.insertRow (newRow) ;
//Set the ClobDomain conent
newRow.setFileContent
(newClobDomainForInputStream(fileInputStream)) ;
newRow.setFileName (filename) ;
//Commit transaction
getDBTransaction () .commit () ;
} catch (Exception ex) ({

ex.printStackTrace () ;

/**

* Generates ClobDomain from InputStream

*/
private ClobDomain newClobDomainForInputStream(InputStream in)
SQLException, IOException {

ClobDomain b = new ClobDomain() ;

Writer out = b.getCharacterOutputStream() ;

writeInputStreamToWriter (in, out);

in.close() ;

out.close() ;

return b;

/**
* Helper method to write to ClobDomain's OutputStream
*/
private static void writeInputStreamToWriter (InputStream in,
Writer out) throws IOException (
InputStreamReader isr = new InputStreamReader (in) ;
char[] buffer = new char[8192];

throws

[205]

Advanced Concepts on Entity Objects and View Objects

int charsRead = 0;
while ((charsRead = isr.read(buffer, 0, 8192)) != -1) {
out.write (buffer, 0, charsRead) ;

}

The following example demonstrates the usage of oracle.jbo.domain.BlobDomain
for inserting binary files into the database table through the FileStorageVO
view object.

//In application module implementation class

public class HRServiceAppModuleImpl extends
ApplicationModuleImpl implements HRServiceAppModule{
// Other AM methods go here...

/**
* This method inserts the binary content in to DB
* @param fileName
* @param fileInputStream
*/
public void demoBLOBInsert (String fileName, InputStream
fileInputStream) {
//Get the view object
ViewObjectImpl fileStrorages = getBinaryFilesStorage() ;
FileStorageVORowImpl newRow =
(FileStorageVORowImpl) fileStrorages.createRow() ;
fileStrorages.insertRow (newRow) ;
//Set the BlobDomain content
newRow.setFileContent
(newBlobDomainForInputStream(fileInputStream)) ;
newRow.setFileName (fileName) ;
getDBTransaction () .commit () ;
;**
* Generates BlobDomain from InputStream
*/
private BlobDomain newBlobDomainForInputStream(InputStream in) throws
SQLException, IOException {
BlobDomain b = new BlobDomain() ;
OutputStream out = b.getBinaryOutputStream() ;
writeInputStreamToOutputStream(in, out) ;
in.close () ;
out.close() ;

[206]

Chapter 5

return b;
/**
* Helper method to write to BlobDomain's OutputStream

*/

private static void writeInputStreamToOutputStream(InputStream in,
OutputStream out) throws IOException {
byte[] buffer = new byte[8192];
int bytesRead 0;
while ((bytesRead = in.read(buffer, 0, 8192)) != -1) {
out.write (buffer, 0, bytesRead);

A working example of using oracle.jbo.domain.ClobDomain
W\l for storing uploaded text files can be found in the example code that
~ we mentioned at the beginning of this book, under Preface section. To
Q access the ClobDomain example, open the ADFDevGuideCh5HRModel
workspace in JDeveloper and look for clobDomainExample. jsf in the
ViewController project.

BLOB and CLOB support for alternate
databases

If your application uses a non-Oracle database, then you can use java.sqgl.Clob
and java.sql.Blob attribute types in the entity objects and view objects to represent
CLOB and BLOB database table columns. The java.sqgl.Clob and java.sql.Blob
are interfaces; the actual implementation classes used by ADF runtime for these
interfaces are:

® oracle.jbo.domain.generic.GenericClob

® oracle.jbo.domain.generic.GenericBlob

M If you are developing against a non-Oracle database, select SQL92 for the
Q SQL platform and Java Data Type Map when you initialize the business
component project by defining the database connection.

[207]

Advanced Concepts on Entity Objects and View Objects

Building business components
dynamically

The ADF Business Component framework allows you to programmatically define
entity objects and view objects at runtime. This feature is useful when you need to
deal with a highly dynamic business model where the same web Ul may need to
query or update different data sources depending upon the current user profile or
other settings.

Building dynamic entity objects and view
objects

ADF entity objects and view objects expose APIs for building definitions at runtime.
Let us learn these APIs through an example.

In this example, we are programmatically building an entity object and a view object
on the fly. As mentioned earlier, you may go for such implementations when you
need to build highly dynamic pages whose display content and the underlying data
source changes dynamically.

Note that we are not discussing how to build a dynamic Ul in this
M chapter. The techniques for building a dynamic model and Ul are
Q discussed in the Appendix A section of this book with an end-to-end
example. You can download the Appendix from the Packt website link
that we mentioned at the beginning of this book, in the Preface section.

Let us take a quick look at the methods and APIs used in this example:

* buildDynamicDeptViewCompAndAddtoaM (): This is the entry point for this
example. This method generates an entity object based on the DEPARTMENTS
table and then creates a view object based on this entity object. The dynamic
view object is exposed through the application module for use by the client.

* buildDeptEntitySessionDef (): This method creates an entity definition
object (EntityDefImpl), sets the DEPARTMENTS table as the data source, and
then adds attributes as appropriate. Before returning the definition object to
the caller, this method registers the new definition object with the definition
manager used by the ADF Business Components' runtime.

* DbuildDeptViewSessionDef (): This method creates a view definition from
the dynamically generated entity definition object and registers it with the
definition manager used by the ADF Business Components' runtime.

[208]

Chapter 5

* addviewToPdefApplicationModule (): This method adds a dynamically
generated view object to the application module.

This example under the cover uses MDS (Meta Data Services) to store the
personalized definitions for the dynamic business components that we create on the
fly. So if you want to try out a similar example, you may need to configure an MDS
persistent store in your application. This example uses the following configuration
in adf /META-INF/adf-config.xml:

<adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">

<mds-config version="11.1.1.000" xmlns="http://xmlns.oracle.com/mds/
config"s>

<persistence-configs>
<metadata-namespaces>
<namespace path="/sessiondef"
metadata-store-usage="mdsRepos"/>
<namespace path="/persdef"
metadata-store-usage="mdsRepos"/>
<namespace path="/x1iffBundles"
metadata-store-usage="mdsRepos"/>
</metadata-namespaces>
<metadata-store-usages>
<metadata-store-usage id="mdsRepos"
deploy-target="true" default-cust-store="true"/>
</metadata-store-usages>
</persistence-config>
<cust-config>
<match path="/">
<customization-class
name="oracle.adf.share.config.SiteCC"/>
</match>
</cust-config>
</mds-config>
</adf-mds-config>

In order for personalization of business components to work, you must have a valid
<cust-configs entry in adf-config.xml.

The sample application module methods for building programmatic entity and view
objects are as follows:

//In application module implementation class
public class HRServiceAppModuleImpl extends
ApplicationModuleImpl implements HRServiceAppModule {

[209]

Advanced Concepts on Entity Objects and View Objects

private static final String DYNAMIC DETP_ VO INSTANCE =
"DynamicDeptVO";
/**
* This method defined in the application module
* generates dynamic entity definition and view object
* definition for DEPARTTMENTS table and add it to AM instance
*/
public void buildDynamicDeptViewCompAndAddtoAM ()
//Check if view definition exists for
//DYNAMIC_DETP_VO_INSTANCE
ViewObject internalDynamicVO = findViewObject
(DYNAMIC DETP_VO INSTANCE) ;
if (internalDynamicVO != null)

{

return;

}

//Build entity definition

EntityDefImpl deptEntDef = buildDeptEntitySessionDef () ;
//Build view object definition

ViewDefImpl viewDef = buildDeptViewSessionDef (deptEntDef) ;
//Add view object to application module
addvViewToPdefApplicationModule (viewDef) ;

}

//Other method definitions go here...

}

The method body for buildDeptEntitySessionDef () and buildDeptViewSes
sionDef (EntityDefImpl) are explained in detail, in the following step-by-step
instructions.

Steps for building entity definition at runtime

The following are the steps for building a typical entity definition at runtime:

1. Create oracle.jbo.server.EntityDefImpl with DEF SCOPE_SESSION. All
the entity definitions created at runtime should be marked as session scope.

2. Specify a unique name for the newly created entity definition by calling
EntityDefImpl::setFullName (String name). You can use the full
name to find the definition object later.

3. Specify a name for the definition object by calling
EntityDefImpl::setName (String name). You can skip this
step if the name is set while creating the definition object in stepl.

[210]

Chapter 5

4. Set the alias name for the entity definition by invoking EntityDefImpl:
:setAliasName (String s), which will be used by the framework while
generating a query at runtime.

5. Set the name of the database source table by calling
EntityDefImpl: :setSource (String source).

6. Set the name of the database source type (such as table, view, and so on) by
calling EntityDefImpl: :setSourceType (String sourceType).

7. Add the attributes to the entity definition by invoking addAttribute (String
attrName, String columnName, Class javaType, boolean
isPrimaryKey, boolean isDiscriminator, boolean isPersistent) on
EntityDefImpl.

8. Resolve the entity definition before use by the client by calling EntityDefIm
pl::resolveDefObject (). When you call this AP], the framework performs
the validation and resolution of various part of the definition.

9. Write the definition to an XML outputs stream by calling EntityDefImpl: :w
riteXMLContents ().

10. Save the definition to XML by calling EntityDefImpl: : saveXMLContents ().

These steps are clearly marked in the following code snippet to make it easier for you
to understand:

//In HRServiceAppModuleImpl class
/**
* Build entity definition for DEPARTMENTS table
* @return
*/
private EntityDefImpl buildDeptEntitySessionDef ()
//Stepl: Build the entity definition object.
//All definitions created at runtime
//should be marked as session scope.
EntityDefImpl entDef =
new EntityDefImpl (
oracle.jbo.server.EntityDefImpl.DEF SCOPE SESSION,
"DynamicDeptEntityDef") ;
//Step 2: Set the full name for the entity definition
entDef .setFullName (entDef .getBasePackage () + ".dynamic." +
entDef .getName ()) ;

//Step 3: Sets the name for entity definition
entDef . setName (entDef .getName ()) ;

//Step 4: Sets the alias which is used in query

[211]

Advanced Concepts on Entity Objects and View Objects

entDef .setAliasName (entDef .getName ()) ;

//Step 5: Set the database table name
entDef .setSource ("DEPARTMENTS") ;
//Step 6: Set the database source type

entDef .setSourceType (EntityDefImpl.DBOBJ TYPE TABLE) ;

//Step 7:Add the attributes

entDef .addAttribute ("DepartmentId", "DEPARTMENT ID",
Integer.class, true, false, true);

entDef.addAttribute ("DepartmentName", "DEPARTMENT NAME",
String.class, false, false, true);

entDef .addAttribute ("ManagerId", "MANAGER ID",
Integer.class, false, false, true);

//Step 8:Resolves entity definition and

//validates it before this definition object can be used.

entDef .resolveDefObject () ;

//Step 9: Write the definition to XML stream
entDef .writeXMLContents () ;

//Step 10:Save the XML file

entDef .saveXMLContents () ;

return entDef;

Steps for building a view definition with entity
usage at runtime

The following are steps for building a typical view definition based on entity usage
at runtime:

1. Create oracle.jbo.server.ViewDefImpl with DEF SCOPE_SESSION. All the
view definitions created at runtime should be marked as session scope.

2. Specify a unique name for the newly created view definition by calling
ViewDefImpl: :setFullName (String name). You can use the full name to
find the definition object later.

3. Specify the access mode and other configuration required for the view
object definition.

[212]

Chapter 5

4. Add the entity usage by calling addEntityUsage (String usageName,
String entityDefName, boolean referenceOnly, boolean readOnly)
on ViewDefImpl. This specifies the entity objects that back up the view object
at runtime.

5. Specify attributes for the view object. This example calls
addAllEntityAttributes (String entityUsageName) to
include all the attributes from an entity definition.

6. Resolves the view definition before use by the client, by calling viewDefImp
1::resolveDefObiject (). This call resolves the attribute definitions with its
entity bases.

7. Write the definition to an XML output stream by calling ViewDefImpl: :writ
eXMLContents ().

8. Save the definition to XML by calling ViewDefImpl: :saveXMLContents ().

The previous steps are marked in the following code snippet to make it clearer
for you:

//In HRServiceAppModuleImpl class

/**
* Build view definition from the EntityDefImpl
* @param entityDef
* @return
*/
private ViewDefImpl buildDeptViewSessionDef (EntityDefImpl entityDef) {
//Step 1l:Define the ViewDefImpl. All definitions created at

// runtime should be marked as session scope.
ViewDefImpl viewDef =
new oracle.jbo.server.ViewDefImpl (
oracle.jbo.server.ViewDefImpl.DEF SCOPE_ SESSION,
"DynamicDeptViewDef") ;
//Step 2: Sets the full name for the view definition
viewDef .setFullName (viewDef .getBasePackage () + ".dynamic."
+ viewDef .getName ()) ;
//Step 3: Sets the access mode and generic configurations
viewDef .setUseGlueCode (false) ;
viewDef .setIterMode (RowIterator.ITER MODE LAST PAGE FULL) ;
viewDef.setBindingStyle (
SQLBuilder .BINDING STYLE ORACLE NAME) ;
viewDef.setSelectClauseFlags (
ViewDefImpl.CLAUSE GENERATE RT) ;
viewDef.setFromClauseFlags (ViewDefImpl.CLAUSE GENERATE RT) ;

[213]

Advanced Concepts on Entity Objects and View Objects

}

//Step 4:Add entity usage

viewDef .addEntityUsage ("DynamicDeptUsage",
entityDef.getFullName (), false, false);

//Step 5:Add all attributes from entity
viewDef .addAllEntityAttributes ("DynamicDeptUsage") ;
/**

*Step 6: It resolves attribute definitions

* with its entity bases.

*/

viewDef .resolveDefObject () ;
//Step 7: Write to XML Stream viewDef.writeXMLContents () ;
//Step 8: Save to XML file

viewDef .saveXMLContents () ;

return viewDef;

Note that while building the view dentition or entity definition at runtime, they must
go through resolveDefObject (), writeXMLContents (), and saveXMLContents ()
calls before it can be used by the runtime.

Once the entity definition and view definition objects are in place, the last step in
this exercise is to add the view object that we generated in the previous step to
the desired application module. This is shown in the following code snippet. This
example uses a personalization definition of the application module to store the
changes. The personalized business components are explained in the next section.

/**

* Adds the view definition to application module
* @param viewDef

*/

private void addviewToPdefApplicationModule (ViewDefImpl viewDef)
//This example uses the PDefApplicationModule object which
//is a personalization definitions of AM. This is explained in

// next section - Personalized Business Components
//If you don't need to persist the dynamically added
//view object across sessions, then you can bypass the

// PDefApplicationModule and directly invoke

// createViewObject () available on application module
// for creating VO. If you do so, these changes will be
//available only for the current user session.

oracle.jbo.server.PDefApplicationModule pDefAM =
oracle.jbo.server.PDefApplicationModule. findDefObject

[214]

Chapter 5

(getDefFullName ()) ;

if (pDefAM == null)
pDefAM = new oracle.jbo.server.PDefApplicationModule() ;
pDefAM. setFullName (getDefFullName ()) ;

}

pDefAM. setEditable (true) ;
pDefAM.createViewObject (DYNAMIC DETP VO INSTANCE,
viewDef .getFullName ()) ;

//BApply changes to PDef object of AM
pDefAM.applyPersonalization (this) ;

//Write the PDef to XML
pDefAM.writeXMLContents () ;
pDefAM. saveXMLContents () ;

}

//Other methods go here...

You can find the previous sample in the example code that we
M mentioned at the beginning of this book, in the Preface section. To access
Q this example, open the ADFDevGuideCh5HRModel workspace in
JDeveloper and look for the HRServiceAppModuleImpl class in the
Model project.

Personalized business components

Oracle ADF Business Components use personalization definition objects to
customize the business component definitions at runtime. ADF uses oracle.jbo.
server.PDefEntityObject, oracle.jbo.server.PDefViewObject, and oracle.
jbo.server.PDefApplicationModule to store the runtime customization for

an entity object, view objects, and application modules respectively. When the
framework loads the application module definition, view definition, or entity
definition, it checks whether there is a corresponding personalization definition
object present and, if present, wears the PDef like a transparent overcoat on top of all
of the existing features of that object. It provides a context on which to pin additional
attributes and validators. The end user sees a definition that is the union of the base
definition plus the additional personalization. The runtime changes are stored in

the Meta Data Service (MDS) store. All the structural changes are stored at site level,
reflecting changes across all user sessions.

[215]

Advanced Concepts on Entity Objects and View Objects

In other words, for personalization to work adf-config.xml should have

<cust-configs entry in adf-config.xml under the MDS configuration section.
In the last example, we have used oracle.jbo.server.pPDefApplicationModule

which falls in the personalized component category.

For details about MDS, see Customizing Applications with MDS
in Oracle Fusion Middleware Fusion Developer's Guide for Oracle
M Application. To access the documentation online go to http://
<::§ www.oracle.com/technetwork/developer-tools/jdev/
documentation/index.html and choose Oracle JDeveloper and
ADF Documentation Library | Fusion Developer's Guide. Use the
Search option to find specific topics.

The following example illustrates how you can use PDefViewObject to alter a
view definition that we created at runtime in the previous section. The following
example adds a new attribute LocationId to the DynamicDeptViewDef, if the
existing definition object is not containing it. The changes are then saved to a
PDefViewObject.

//In application module implementation class
private static final String ATTRIB LOC_ID = "LocationId";

private boolean addLocAttributeToDeptView () {
//Step 1- Find PDefViewObject for
//'sessiondef.dynamic.DynamicDeptViewDef'
ViewDefImpl viewDef = ViewDefImpl.findDefObject
("sessiondef .dynamic.DynamicDeptViewDef") ;
PDefViewObject pDefVO = (PDefViewObject)viewDef.
getPersDef () ;
//Step 2- No personalization exist, then create
// a new PDefViewObject
if (pDefVO == null)
pDefVO = new PDefViewObject () ;
pDefVO.setFullName (viewDef .getFullName ()) ;
}
//Step 3- check if ATTRIB_LOC_ID exist in the defnition
if (pDefVO.getAttributeIndexOf (ATTRIB _LOC ID) != -1) {
return false;
}
//Step 4- If no definition exist for ATTRIB LOC ID, then
// create it and add it to PDefViewObject
pDefVO.setEditable (true) ;
pDefVO.addEntityAttribute (ATTRIB LOC 1ID,

[216]

Chapter 5

"DynamicDeptUsage", ATTRIB LOC ID, true);
//BApply changes to PDef object for the VO
pDefVO.applyPersonalization (findviewObject (
DYNAMIC DETP VO INSTANCE)) ;
//Save changes to XML
pDefVO.writeXMLContents () ;
pDefVO. saveXMLContents () ;
return true;

Summary

In this chapter we have explored the advanced concepts on entity objects and view
objects. Specifically, we discussed the lifecycle of both entity objects and view objects,
and then went through a bunch of generic usage patterns for these components with
examples. We concluded this chapter with an example to programmatically build
business components at runtime.

As we progress with other layers in the ADF framework in the coming chapters, we

will discuss more and more advanced features. The fine-tuning parameters available
for business components will be discussed in Chapter 12, Oracle ADF Best Practices. In
the next chapter, you will learn about the ADF application module, the service layer

for the business components' stack.

[217]

Introducing
the Application Module

In the previous chapters we have discussed the business components that build

the data model for your application. Now the question that you may have in your
mind is, how does Oracle ADF expose that data model and business methods to the
client for use? Before answering this question let us take a step back and see what is
missing from the picture, as we put all the pieces together from our discussion so far.
One thing you may surely notice is that we have not yet discussed about a service
layer which act as an interfacing layer for the business model implementation. In this
chapter, we will learn about the application module component, the service layer for
the business components stack. We will be discussing the following topics:

* Concepts and architecture

* Core features of an application module
* Defining an application module

* Sharing of application module data

* Nesting application modules

* Working with an application module

Introduction

In simple words, an application module is a logical unit of work for an application.
However in reality it does a lot more. Being the client facing layer of the business
components stack, an application module does all the generic book keeping activities
involved in executing view objects or business methods, such as acquiring the database
connection, transaction management, user session tracking, and maintaining the state
of the service invocations. And it was all done without sacrificing the scalability of
your system. We will start our discussion with the basic concepts of the application
modules, and as we proceed further we will be discussing more advanced concepts.

Introducing the Application Module

Concepts and architecture

The application module is a modular container of the view object instances,
view links, business methods, and other child application modules. As any other
framework components in the ADF Business Components stack, the application
module also follows a highly extensible structure by design.

Ingredients of an application module

This is in continuation of the basic things we discussed in Chapter 2,
Introduction to ADF Business Components.An application module comprises
of the following components:

Application module XML metadata file: This is the application module
descriptor file holding metadata definitions. The metadata includes exposed
business methods and data models for use, by clients, such as view objects
and associated view criteria, master-child view, objects connected through
view links, and nested application modules.

Application module definition: This is the runtime Java class representation
of the application module XML metadata file. The default base class

for storing the application module definition is oracle.jbo.server.
ApplicationModuleDefImpl which can be extended to add custom
functionalities if needed. This class stores the runtime metadata for
application modules read from the corresponding XML file.

Application module implementation: This class represents an application
module instance generated by runtime to serve a request from the client.
The default base class used for representing an application module instance
is oracle.jbo.server.ApplicationModuleImpl. You will subclass

this class to define the custom business logic that must execute in the
application's middle tier.

bc4j.xcfg: This file contains metadata for all the application modules
present in the same Java package for a project. This file is located in the
Common subdirectory relative to the path where the application module's
XML component definition is located. An application module's runtime
behaviour is controlled by the configuration properties present in this

file. The properties stored in this file include the JDBC data source name,
application module pooling configurations, database specific configurations,
locking mode, and so on.

[220]

Chapter 6

The following diagram illustrates the ingredient of an application module. You may
notice additional framework components such as Application Pool and Connection
Strategy in the diagram. These items are discussed in the next section.

Application Module Definition

S

Application Module

!

View Object Instance Ve ~\

I

| Application Pool
View Link Instance 1

I

|

I

\

~—_——————

O— View Object Instance
Connection Strategy
N e e e e e e _7
O— Business Methods o —————— ~.
I |
Generic Infrastructure : Session 1
O—{Methods <:>I :
|
[1 Transaction Handler :
. \
O— [Nested Application Module N e ___ ,l

Additional core components

When we talk about application modules, the story is incomplete without referring
to core components used by the framework to control the runtime behaviour of
application module instances. The following is the list of core components:

Application Pool: The application pool is responsible for managing

the instance's pool for a specific application module. The default
implementation class used by runtime is oracle.jbo.common. ampool.
ApplicationPoolImpl. However, you can configure an application module
to use the customized application pool implementation by setting the
PoolClassName property pointing to the fully qualified custom class

name in the corresponding bc4 7 . xcfg file.

Connection Strategy: Application pool makes use of this component for
creating new application module instances and also for connecting an
application module with a data source. The default implementation used by
the runtime is oracle.jbo.common.ampool .DefaultConnectionStrategy.
To provide a custom connection strategy class, override the jbo.ampool.
connectionstrategyclass property in the bc4j . xcfg file by setting it to
the fully qualified name of the custom connection strategy class.

[221]

Introducing the Application Module

* Session: The session object stores the session context for the client. A session
object is instantiated for each root application module when the application
module is activated. The default session implementation class is oracle.
jbo.server.SessionImpl. To provide a customized session implementation
class, override the sessionClass property in the bc4j . xcfq file by setting it
to the fully qualified name of the custom session class.

e Transaction Handler: This handles the database transaction associated
with the user session. To override the default transaction handler
(oracle.jbo.server.DefaultTxnHandlerImpl), you will have to
implement oracle.jbo.server. TransactionHandlerFactory that
returns a custom oracle. jbo.server TransactionHandler
implementation.

To make the application module to use your custom
TransactionHandlerFactory, customize the oracle.jbo.server.
SessionImpl by overriding the SessionImpl: :getTransactionHandle
rFactory () method to return the custom TransactionHandlerFactory
implementation that you created.

You may rarely customize the default implementations supplied by the framework
for these components. However there are some exceptional cases. One such scenario
is building application modules without using a database. This case arises when
your application module contains only programmatic entity objects and/or view
objects which do not use databases as their data source. The steps for building an
application module with no database connection are explained in the Appendix
titled More on ADF Business Components and Fusion Page Runtime of this book. You
can download the Appendix from the Packt website link that we mentioned at the
beginning of this book, in the Preface section.

The core features of an application module

The following are the important offerings from the application module component:

* Visual and declarative development.
* Improved modularity support for the business services.

* Out of the box support for basic infrastructure services required for an
enterprise application. The list includes management of user sessions,
business transactions, database connections, and concurrent access.

* Support to nest multiple application modules to build composite services.
* Declarative settings to fine-tune runtime performance.

* Runtime monitoring and tuning support.

[222]

Chapter 6

* Scalable architecture through out of the box support for instance pooling.
* Cluster aware components which ensure the high availability for the system.

* Ability to expose the service methods as web services for use by
heterogeneous clients.

Defining an application module

In this section we will learn about building and configuring an application
module using JDeveloper IDE. This section mainly focuses on declarative
development aspects.

Creating application modules

To define an application module, perform the following steps:

1. Right-click on the model project and select New Application Module.
In the Create Application Module dialog window, enter a package
name and application module name. Then click on Next.

2. On the Data Model page, select the view object you want to expose for use
by the client from the Available View Objects list and shuttle it to the Data
Model list. Optionally, you can rename the view object instance in the Data
Model list to make it more readable. Click on Next.

3. On the Application Module page, select the existing application module in
the Available list and shuttle it to the Selected list to use it in the current
application module. Optionally, you can rename the application module
object instance in the Data Model list. The application module you added
is nested under the root application module.

On the Java page, you can optionally generate Java classes.

5. (Click on Finish to save the changes and generate the application
module definition.

Optionally generating Java classes for an

application module

When you generate an application module, by default, the IDE creates an XML file
for storing the metadata for the component. If you want to add custom business
methods or want to customize the default behaviour of the application module
component, you will need to generate Java classes and add your custom code.

[223]

Introducing the Application Module

To generate Java classes for an application module, double-click on the application
module object to display the overview editor. In the overview editor, go to Java tab
and click on the Edit icon. In the Select Java Options dialog, select the types of Java
classes you want to generate. The possible options are as follows:

* Application Module Class: This class represents an application module
instance. You may generate an application module class to add custom
business methods for use by the client or to override default lifecycle
callback methods in order to meet your use case requirements.

* Application Module Definition Class: This class stores the runtime
metadata for an application module. You may rarely customize the
default application module definition class.

Adding hierarchical view object instances to
an application module

The ADF application module has out of the box support for enabling master detail
coordination between hierarchical view object instances in the data model linked
through view links.

To enable active master detail coordination in the data model, perform the
following steps:

1. Double-click the application module to open in the overview editor. Select
the Data Model page in the overview editor and then expand the view object
instances section.

2. Inthe Available View Objects list, locate the view object hierarchies that
you want to expose to the client for use. Select the master view object in the
Available View Objects list and add that instance to the Data Model list.
Leave the newly created master view instance selected so that we can add
child view object instances.

3. To add the detail (child) instance to the master instance, shuttle the desired
detail view object to the Data Model list below the selected master view
instance, as shown in the following screenshot:

[224]

Chapter 6

ﬂ HRServiceAppModule, xml
@
General
Data Model Components
Data Model
Java Select & view object from the Available tree, select the desired parent instance or application module from the Data Model tree, and
use the shuttle control to create a named view instance in the data model.
EJB Session Bean
Service Interface - View Object Instances
Configurations The data model contains a list of view object and view link instances, displaying master-detail relationships.
Available View Objects: Data Model: Subtypes... Edit...
com.packtpub.adfguide. ché.model.HRModel Iﬁ HR.ServiceAppModule
[{{ll com.packtpub.adfguide. ché.model. entity. assoc =8 Departments
1771 §com. packtpub . adfguide. chs. model. view ffl ployeesForDepartment
5 Departmentvo & ?fl Employees
2 EmployeeVO via DeptToEmpFkLink
) Employeevo
[l com.packtpub.adfguide. ché.model. view.link
View Instance: EmployeesForDepartment /
View Link Instance: DepToEmpFkLink 7
View Definition: com.packtpub, adfguide. ché....
View Link Definition: com.packtpub. adfguide. ch....
4
+ Application Module Instances

Overview | Diagram Source

=l
=

The previous steps can be repeated for building a data model of any

complex hierarchy.

Overriding the default properties of an

application module

While the default configuration parameter values for the application modules
may be good enough for most of the generic use cases, you are free to override
the specific configuration parameters based on the usage pattern of individual

application modules.

To configure the application module properties, perform the following steps:

1. Double-click the desired application module in the model project. In the
overview editor, select the Configurations tab.

2. The configuration table will display Local, Shared, and any custom

configurations present in the bc4 7 . xc£g file for the selected application
module. Select the desired configuration and then click on the Edit icon.

[225]

Introducing the Application Module

3. In the Edit Configuration window dialog, edit the desired properties
and once you are happy with the changes click on OK to save the
modified values.

— Edit Configuration @
Configuration Name: |HRAppModulelocal |

Application Module Pooling and Scalability ~ Properties

Property Value
ActivateSharedDataHandle false
ApplicationMame com.packtpub.adfguide.ché.model. service...
ApplicationPath
AppModuleIndiName com.packtpub. adfguide. che.model. service.. .
ConnectionMode
ConnectionPort 7101
DeployPlatform LOCAL
Factory-Substitution-List
HandleMame
HostName
IsLazyLoadingTrue true
java.naming. factory.initial oracle.jbo.common. JboInitialContextFactory
java.naming. security. credentials
java.naming. security. princpal
jba. 323.compatible false
jbo.903. compatible false
jbo.abstract.base.check true
jbo.ampool.connectionstrategyclass oracle.jbo.common. ampool. DefaultConnec.. .
jba.ampool.doampooling true
iha amnnal dvnamiridherredential trie
Add Remove
Press F9 to sort table by property name.
Help 0K Cancel

An enterprise application typically may have many application modules.
Configuring or overriding the properties for each of these application modules is not
an easy task. To make your life easier, ADF allows you to manage the commonly

used properties for the application modules present in an application using the
adf-config.xml file. This file is located in the <application folders\.adf\
META- INF folder. The configuration present in adf-config.xml will override the
individual application module properties.

[226]

Chapter 6

Commonly used application module configuration
properties

The following table displays the most commonly used properties for an
application module:

Property

Description

Default Value

jbo.

jbo.

jbo.

jbo.

jbo

jbo.

jbo.

ampool.initpoolsize

ampool .minavailablesize

ampool.timetolive

dofailover

.max.cursors

load.components.lazily

recyclethreshold

The number of application
module instances created when
the pool is initialized.

The minimum number of
available application module
instances that the pool monitor
should leave in the pool during
the resource cleanup operation.

How long to wait before the
application module in the
pool becomes a candidate
for removal.

Enable eager passivation of the
pending transaction state each
time an application module is
released to the pool in managed
release (stateful) mode. This
needs to be turned ON for

high availability.

The maximum number of
cursors the business components
may have open. The framework
will clean up free JDBC
statements as the number of
cursors approaches this number.

Determines whether to load
components definitions lazily.

Maximum number of
application module instances
that attempt to preserve session
affinity for the next request.

0

3600000 ms

false

50

false

10

[227]

Introducing the Application Module

Property

Description

Default Value

jbo.txn.disconnect level

This mode controls how

the application module is
disconnected from the client at
the end of a request, typically
used in conjunction with
connection pooling. If jbo.
txn.disconnect level =
0, then the framework removes
the view object and its row set
when the application module
is disconnected from the client
and recreates the same for

next request. If jbo. txn.
disconnect_level =1,

then the framework stores the
state of the view object and
row set in memory closing

the corresponding JDBC
objects, which is faster and
recommended. In other words
jbo.txn.disconnect level
= 1 instructs the framework
to manage the partially fetched
JDBC ResultSets in memory
rather than passivating their
state.

0

To know more about the application module configuration parameters,

refer to the topic Tuning Application Module Pools and Connection Pools in
A\l Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application
Development Framework. To access the documentation go to http://
www.oracle.com/technetwork/developer-tools/jdev/
documentation/index.html and choose Oracle JDeveloper and ADF
Documentation Library | Fusion Developer's Guide. Use the Search
option to find specific topics.

[228]

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

Chapter 6

Modifying the JDBC data source name for an
application module

You can alter the JDBC connection type or JDBC data source name specified for an
application module at any point in time during development. To alter the database
connection properties, perform the following steps:

1. Double-click the desired application module in the model project to open up

2.

the overview editor and then select the Configurations tab.

In the Configurations tab, select the desired configuration and click on the
Edit icon.

In the Edit Configuration window dialog, select the Application Module
tab. This page allows you to change the JDBC Datasource Name used in the
application module. For example, the following screenshot displays the JDBC
Datasource name specified for the HRAppModule application module.

This page also allows you to edit the Connection Type (JDBC URL or

JDBC Datasource) used in the application module.

-+ Edit Configuration

==

Configuration Name: |HR AppModuleLocal

Application Module Pooling and Scalability ~ Properties

Middle Tier Server Type

Connection Type

JDBC DataSource w| Datasource Name: liayva:compjeny fidbc/HRDS

Application Module

Application Module

Help QK

Cancel

4. Make changes as appropriate and click on OK to save the modified value.

[229]

Introducing the Application Module

Overriding properties for a view object
instance

An application module allows you to declaratively apply view criteria on a few
selected view object instances present in the application module. The editor also
helps you to override certain tuning properties for the view object instances.

Declaratively applying view criteria to a view object
instance

JDeveloper will help you to apply view criteria to a view object instance that you
added to the data model in an application module. All the query execution through
this view object instance will have this view criteria appended.

To customize a view object instance added to an application module, perform the
following steps:

1. Double-click the application module in the model project.

2. Inthe overview editor, select the Data Model navigation tab. On the Data
Model Components page, select the desired view object instance in the data
model list and click on the Edit button.

3. In the Edit View Instance dialog window, select the view criteria that you
defined in the view object definition and shuttle that to the Selected list. The
Bind Parameter Values section will display the bind parameters defined on
the view object. If the view criteria that you selected use bind variables, then
optionally you can set the value using Groovy expression.

4. In the Edit View Instance dialog window, select the Tuning option in the
left panel to override the tuning parameters for the currently selected view
object instance.

5. Click on OK to save changes.

At runtime, the framework will automatically apply this view criteria usage to the
view object instance.

Sharing of application module data

An enterprise application often uses seed data as master data in business data
capture screens. An example might be, the use of currency codes in a list of values
components displayed in various data capture screens. As the seeded data changes
very rarely in the lifespan of an application, it makes sense to cache the data and
share it across multiple user sessions or share it across requests for a specific session.

[230]

Chapter 6

The ADF Business Component framework allows you to cache the query results

of a view object using a shared application module. An application module can

be shared either at application level, allowing all user sessions to access the same
instance, or shared at user session level allowing a user session to share the same
application module instance added under a distinct root application module. In the
case of session level sharing, the framework will not share the data from a session
scoped shared application module between different root application modules. The
following section explains how you can use JDeveloper to build shared application
modules declaratively:

1. To create a shared application module instance, right-click on the model
project, in which you want to create the shared application module and
choose Project Properties.

2. In the Project Properties window, expand the ADF Business Components
node and select Application Module Instances. On the ADF Business
Components section, select one of the following tabs:

i. The Application tab: If you want to share the application module
at application level.

ii. The Session tab: If you want to share the application module at
user session level for a specific root application module.

3. Once you select the scope for sharing the application module, select the
desired application module in the Available Application Module list and
shuttle that to the Application Module Instances list. Give a logically and
meaningful unique Instance Name for the newly added application module
as shown in the following screenshot. Click on OK to save the changes.

—~+ Project Properties - D:\writing\bookladfdevguide\sourcerepattrunkdocs\chapterd\sources\ADFDevGuideChdHRMe deliLookupModel\LcokupMedel jpr @

Q Search ADF Business Components: Application Module Instances
[#- Praject Source Paths Application Session

£~ ADF Business Companents Select an application module from the available tree, and didk ">' to create a named instance of the shared application module.

g /\pplication Module Instances The instance can be shared in the application level,

- Base Classes

- Imparts Available Application Modules: Application Module Instances:

Oph;ns com, packtpub.adfauide.chs. model.LookupMode! om. packtpub.adfguide.ché. model.LookupModel
- Packages = (i) com.packtpub.adfguide.ché.model services ﬂ

Preloaded Objects L
- Property Sets

Regex Settings
- Registered Rules
- Substitutions
- View Object

- ADF Mode! 3
-~ ADF View
-~ Ant
Compiler
- Dependencies
Deployment
-~ EJB Module
Extension L Default Name: | ookupService Instance Name: [appinsharedLookupService
-~ Facelets Tag Libraries
- Features Definition: com.packtpub.adfguide. ché.model.services.Loo. ..
Help oK Cancel

[231]

Introducing the Application Module

When you define a shared application module, the JDeveloper IDE updates the
<ModelProjects>.jpx file with a new <AppModuleUsage> entry. To view this entry
in the editor, open the <ModelProjects. jpx file in the overview editor and select
AppModules tab. You can see the new application module usages that you added as
shown in the following screenshot:

¥ LookupModeljpx *)

General
AppModules

Imports

Substitutions

AppModules

These application modules may be shared throughout the project for list of values and view accessors in entity and view objects.

-1 Application Module Instance for Applications Gﬂ' ®
These application modules may be shared across an application.

Name Definition Object

(AppSharedLockupService

+] Application Module Instance for Sessions

Qverview | Source History

An alternative option to define a shared
application module

You can also use the overview editor of the model project file to define the shared
application module. To do this, perform the following steps:

1. Open the desired <ModelProject>.jpx in the overview editor and then
select the ApplModules tab.

2. To define shared application module instances, click on the green plus icon
displayed in the appropriate section (Applications or Sessions).

3. Inthe Application Module Instances dialog, select the desired application
module from the available list and shuttle it to the right. Click on OK to save
changes and dispose of the dialog.

Runtime behaviour of shared application
modules

A Session scoped shared application module is created as a nested application
module under the root application module at runtime. Its data is shared only within
the same application module hierarchy where it has been added. In other words, it is
not shared across distinct root application modules.

[232]

Chapter 6

An Application scoped shared application module is shared across sessions. A view
object in an application scoped shared application module uses multiple iterators
on top of a single row set for serving multiple clients. If the query used in the view
object is parameterized, then multiple row sets are generated based on the bind
parameter values supplied by the client. These row sets are cached by individual
query collection objects with unique bind variable combinations. For example, an
employee view object instance from a shared application module creates a query
collection pool named <SharedApplicationModuleNames>.<ViewObjectNames,
which holds the view object's query collections. If the employee view object has the
query SELECT Emp.EMPLOYEE_ID, Emp.FIRST NAME, Emp.DEPARTMENT ID FROM
EMPLOYEES Emp WHERE Emp.DEPARTMENT ID = :deptIdBindVar and is executed
with four different bind variable values, say 10, 20, 30, and 40, then four query
collections will be created in the view object.

Query execution for a shared view object

When you call executeQuery () on a view object that is added to a

shared application module, the framework will delegate the call to
refreshCollection(Row[] masterRows, boolean resetIter, boolean

fillUpRange) to reuse the possibly existing query collection. If you really want to
re-execute a shared view object without re using the cached query collection, then
you may want to call forceExecuteQueryOfSharedvo () on the view object,

as follows:

ViewObjectImpl vo = (ViewObjectImpl)
findViewObject ("Departments") ;

vo.forceExecuteQueryOfSharedvo () ;

Shared query collection cache management

The query collections in a non-shared application module are weakly referenced. On
the other hand, the shared query collections, which reside in the shared application
modules, are stored in query collection pools and are strongly referenced.
Consequently, they may stick around for the lifetime of JVM (Java Virtual Machine)
and may even outgrow the heap if left unchecked. This section describes how the
shared query collections are managed by the business components runtime.

[233]

Introducing the Application Module

The ADF Business Components framework removes the unwanted query collections
based on a maximum idle time setting. This feature limits the growth of the cache
and removes unused query collections from the memory space. You can override
the default values for the maximum idle time for the shared query collection and

the sleep period for its pool monitor using the configuration parameters listed in the
following table:

Property Description Default
Value (in
Milliseconds)

jbo.gcpool .maxinactiveage The maximum amount of 1800000

time (ms) that a shared

query collection may

remain unused before it is

removed from the pool.

jbo.gcpool .monitorsleepinterval The time (ms) that the 900000

shared query collection

pool monitor should sleep

between pool checks

The maximum weight of the query collection pool

After removing expired query collections, the pool monitor checks to see if the

total number of rows in a view object (from all query collection instances) exceeds
the specified maximum weight. If so, the query collections are removed in Least
Recently Used (LRU) basis until the weight falls below the limit. The default value
for maximum weight is -1; no limit is placed on the weight. To set a maximum
weight allowed in all the query collection pools, you can specify a positive long value
for the jbo.gcpool .maxweight property in your application module configuration.

To set a maximum weight for a particular view object, you will override the method,
initSharedQCPoolProperties (), from the corresponding viewObjectImpl class
as follows:

//In view object implementation class
protected void initSharedQCPoolProperties (QCPoolProperties gcProp) {
gcProp.setMaxWeight (10000) ;

}

[234]

Chapter 6

Query collection weight

As explained earlier, the default weight of a query collection is the fetched
row size. The weight can be customized for a view object by overriding
getQueryCollectionWeight (QueryCollection) from the corresponding
view object implementation class as follows:

//In view object implementation class
protected double getQueryCollectionWeight (QueryCollection gc) {
double weight;
weight = super.getQueryCollectionWeight (gc) ;
// your algorithm...
return weight;

}

When a pool monitor wakes up after the time specified in jbo.ampool.
monitorsleepinterval to do cleanup work, it will attempt to remove an application
module only if the minimum available size (jbo.ampool.minavailablesize)

is less than the current number of instances. So, for example, if you want all the
shared application module instances to be removed whose inactive age is older

than specified, then the minimum available size should be set to 0.

Although both conditions (minimum available size and maximum inactive usage)
are met, the application module will not get removed if a session is referencing it.
The session must get invalidated via either timeout or explicit logout.

The root application modules with the same jbo. shared. txn property value string
will share the same database connection and entity cache. This property is originally
designed for shared application modules to make them reuse the database connection
and entity cacheby keeping same string value for the jbo. shared. txn property. This
optimizes the resource usage for the shared application modules. Note that, connection
pooling is disabled for the shared application modules by design.

Consuming a shared application module

This section discusses declarative solutions for accessing shared application modules
from a client.

Accessing view objects defined in a shared
application module through a view accessor

In a real life scenario, can may build a separate project to hold shared application
modules, which contains objects such as view objects and entity objects. Other
projects can consume the shared components as an ADF library. Let us take a quick
look at such usages.

[235]

Introducing the Application Module

To consume a view object defined in a shared application module, you will need to
do the following;:

* Package the project that holds the shared components (the shared application
module) as an ADF Library JAR

* To consume this Library from another project, add it as a dependent to the
consumer project and reuse the components

We are not discussing the detailed steps of how to package an ADF
project as ADF Library JAR and how to consume it from another project
in this section. If you are not familiar with this concept, refer to the

M topic Reusing Application Components in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework. To access
the documentation go to http: //www.oracle.com/technetwork/
developer-tools/jdev/documentation/index.html and
choose Oracle JDeveloper and ADF Documentation Library | Fusion
Developer's Guide. Use the Search option to find specific topics.

The high level steps for sharing an application module as an ADF Library JAR are
as follows:

1. Package the project that contains the shared application module as an ADF
Library JAR file.

Add the ADF Library JAR to the consumer project.

This example demonstrates how to consume the shared view object through
a view accessor from a client project. You can later use this view accessor for
defining the LOV or for defining validation. In the consumer model project,
double-click the entity object or view object on which you want to define the
view accessor.

4. Inthe overview editor, select the view accessor navigation tab and click on
the green plus icon to create the new view accessor.

5. Inthe View Accessors dialog, select the desired view instance name from
the shared application module node and shuttle it to the View Accessors list.
This is shown in the following screenshot:

[236]

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

Chapter 6

~» View Accessors

==

Select a view object or shared view instance and shuttle it to the selected list to create & view accessor.

Available View Objects:

com.packtpub.adfguide.ché.model HRDataModel] DepartmentVO
EJ"; com. packtpub.adfguide. ché. model . services. LookupService Lo ?._
T 5

- ([fil com. packtpub.adfguide. ché.model. view

[+ [l com. padktpub.adfguide. chs. model. views g

View Accessors: Edit. ..

SessionSharedLookupService_ ocationLookupDetails 1

Mame: |SessionSharedLookupService_L ocationLookupDetails2

Accessor Name: |SessionSharedLook.upService_LocaﬁonLoolo.lpDetail

Definition: com. packtpub.adfguide. ché. model. view. Location. ...

Help oK Cancel

6. Click on OK to save changes.

When you define a view accessor for accessing a shared view object exposed
through a shared application module, JDeveloper generates the view accessor

entry in the base view object XML file with two special items in the configurations,
namely AMUsageName and ViewInstanceName. The AMUsageName represents
the name that we specified while defining the shared application module and
ViewInstanceName represents the view object instance name exposed though the
shared application module. This is used by the framework to identify the right
application module usage and view object instance when the client code accesses the
view accessor at runtime. For example, the following XML code snippet from a view
object illustrates the view accessor definition that uses the LocationLookupDetails

view object instance from a session shared application module usage with the name
SessionSharedLookupService.

<ViewAccessor

Name="SessionSharedLookupService LocationLookupDetailsl"
ViewObjectName=
"com.packtpub.adfguide.ch6.model.view.LocationLookupVO"
AMUsageName="SessionSharedLookupService"
ViewInstanceName="LocationLookupDetails"
RowLevelBinds="true"/>

[237]

Introducing the Application Module

Associating view criteria with shared
application module instances

To append view criteria to view object instances added into a shared application
module, edit the view object instance from the overview editor for the application
module. In the Edit View Instance window, select the desired view criteria and
shuttle that to the right. This topic is discussed in detail in the section entitled,
Declaratively applying view criteria to a view object instance.

Nesting application modules

Application modules are designed to support modularity. In general, an ADF
application may have multiple application modules, each exposing services for a
specific business use case or workflow. If a specific application module wants to
consume services exposed by another one or if a client wants to consume services
from multiple application modules, then you will have to build composite services
by nesting desired application modules under a root application module. Composing
services by nesting the desired application module under a root application module
is known as application module nesting.

To nest an application module under a root application module, in the model project,
double-click on the application module which you want to act as a root application
module. Select the Data Model tab in the overview editor.

In the Data Model Components page, expand the Application Module Instances

section. Select the application module that you want to nest from the Available list
and shuttle that to the right. Optionally, you can modify the default name set for a

new application module instance to improve the readability.

[238]

Chapter 6

[QHRADpModu\e.xml x 4]
T
@
General
Data Model Components
Data Model
Java Select a view object from the Available tree, select the desired parent instance or application module from the Data Model tree, and use the

shuttle control to create a named view instance in the data model,
EJB Session Bean
Service Interface [View Object Instances
Configurations

=] Application Module Instances

The application module may access the objects and code from each of the application module instances.

Available: Selected:
(5] compacktpub. s 6. model Rt

[#-[{l com.packtpub.adfguide.ché.model. service
(=1l com.packtpub.adfguide.ché. model.services

By .
€
Mew App Module Instance: |LockupService1 Selected: | oo pService 4

Definition: com.packtpub.adfquide. ché.model. services.Look... y

Overview | Diagram Source History

All nested application modules will participate in the root application module's
transaction at runtime, and will share the same database connection and a single
set of entity caches with the root application module. A nested application module
cannot see the instances of any other application modules that might be nested
under the same root at the same level. The following diagram depicts the high-level
architecture of a root application module and the nested application modules
within it.

Root Application Module

O | View Object Instance
<:>| Database
View Link Instance : Connection

| View Object Instance |

Transaction

??

i

|
1
1
|

: Entity Cache
Nested Application Module <:> 1
1

| | -

e ———————

[239]

Introducing the Application Module

M When the application modules are nested, the root application
module's configuration overrides the configuration parameters
specified for nested application modules.

Accessing a nested application module from
the parent

You can use the findApplicationModule () method on the parent application
module to find the nested application module. An example is as follows:

//In application module implementation class

/**

* Container's getter for Child ApplicationModule

* @return DummyAppModulel

*/

public ApplicationModuleImpl getMychildaAppModule ()

return (ApplicationModuleImpl) findApplicationModule ("MychildAppModu
le");

}

Refer to the API documentation for the findApplicationModule (String amName)
method on the oracle.jbo.server.ApplicationModuleImpl class to learn about
the multi-part name support to search for more deeply nested child components.

To find the root application module, use getRootApplicationModule () on the
current application module:

//In nested application module implementation class
ApplicationModule rootAM = this.getRootApplicationModule () ;

Working with an application module

So far our discussions were more focused on the various declarative configuration
options available for an application module. In this section, we will be discussing
programmatic options and APIs available on an application module to deal with
more complex business use cases.

[240]

Chapter 6

Exposing the business service method
through data control

If the declarative features are not enough to meet the use cases, then you can add
custom business methods in the middle tier. ADF has design time support for
exposing custom business methods from both view object and application module
implementation classes through data control for use by the client.

To expose the methods defined in the application module (or view object)
implementation class through data control, perform the following steps:

1. Double-click on the application module (or view object) in the model project.

2. Inthe overview editor, select the Java tab. On the Java Classes page click on
the yellow edit icon corresponding to the Client Interface section.

3. In the Edit Client Interface window, select the desired method from the
Available list and shuttle that to the right.

The exposed methods will be available in the data control panel as shown in
the following screenshot. The exposed methods can be dragged and dropped
on a page at design time or can be invoked programmatically from Java code
using the binding API which we will learn in Chapter 7, Binding Business
Services with User Interface.

—| Data Controls &

SR JHR AppModuleDataControl
=-%5| Departments

&) Departmentld

----- DepartmentMame

----- LocationId

€@ Managerld

| -] revisesalaryForDepartment() |
I:I---D Operations

7] Named Criteria

| revisedSalaryForAllDepartments() |
Ej—--l_:l Operations

EJ---% LookupServiceDataControl

EZI---IE MonDBAppModuleServiceDataControl

[241]

Introducing the Application Module

Where do you write custom business logic in

a fusion web application?

Although the ADF Business Components framework along with JDeveloper IDE
will help you to declaratively build basic business logic for your application, in
some cases, based on the complexity of use cases, you will have to go beyond the
declarative capabilities and write custom business methods for use by the client.
There are multiple places where you can write your custom logic, as follows:

Entity Implementation Class: This class can contain custom business logic
that you may want to be executed at different stages of an entity instance.

View Object Implementation Class: You can use this class to code business
logic that you may want to be executed at different stages of data retrieval
process. The business methods in the view object implementation can also be
exposed through data control for use by the client.

View Row Implementation Class: You will use this class to add your custom
logic when a specific attribute is read from a data source or modified by
the client.

Application Module Implementation Class: This class acts as a service layer
for your system. This class can be extended to add the following;:

i. Custom business service methods that can be exposed through
data control.

ii. Custom business logic that you may want to be executed at
different stages of an application module lifecycle.

Both view objects and application modules can expose business
methods through the data control panel for use. Logically, you
M will use view object implementation for writing a custom business
Q method, if the business method deals with that specific view object
alone and does not need to interact with any other view objects
or entity objects in the module. You will use application module
implementation for writing custom logic for all other cases.

[242]

Chapter 6

Invoking an application module from a Java
client

If you want to invoke an application module from a Java client, then you will
have to use the createRootApplicationModule () method available in the
oracle.jbo.client.Configuration class. Once the processing is done call
releaseRootApplicationModule () in the Configuration class passing
the application module instance. The following is an example:

//In the client class
public void invokeAM () {

String amDef =
"com.packtpub.model.service.HRServiceAppModule";

String config = "HRServiceAppModuleLocal";

HRServiceAppModuleImpl am =null;

try{

// creates or acquires an AM instance from the pool using
// the specified configuration.
am = (HRServiceAppModuleImpl)
Configuration.createRootApplicationModule (amDef,
config) ;
//Invoke business methods on AM
am.doSomething() ;

}finally{

//Release the specified AM

//true for the second parameter removes the
//application module,

//'false' causes to check in application module
//instance to the pool for future use

if(am != null)
Configuration.releaseRootApplicationModule (am, true) ;

[243]

Introducing the Application Module

Invoking a shared application module from a
Java client

When you work on a shared application module in a multithreaded environment,
you will have to use thread safe APIs for creating an application module from a Java
client. The following is an example:

//In the client class
public void invokeSharedaM () {

String amDef =
"com.packtpub.model.service.HRServiceAppModule";

String config = "HRServiceAppModuleShared";

ApplicationModuleHandle handle = null;

try{

//Returns an application module handle.
//The handle is then used to obtain an AM instance
handle = Configuration.
createRootApplicationModuleHandle (amDef, config) ;
ApplicationModule am = handle.useApplicationModule () ;
//Invoke business methods on AM
am.doSomething() ;

}finally{

// Releases the application module associated with

// the handle created from

// createRootApplicationModuleHandle ()

// 'false' causes to retain the application module

if (handle!= null)
Configuration.releaseRootApplicationModuleHandle

(handle, false) ;

[244]

Chapter 6

What you may need to know about
programmatically releasing an application
module?

When you call the following APIs on the Configuration class for releasing an
application module after use, the boolean remove flag decides whether to retain
the state of the application module for later use by the same client or remove the
application module instance after its release. If the remove flag is false, then the
application module is checked into the pool without resetting the state. However
the state will be reset later, if a different client (Session) grabs this instance for use.
Note that when a client calls Configuration: : createRootApplicationModu
le(...), there is no way for the framework to track the caller. In such a case, the
session affinity concept will not work.

® Configuration.releaseRootApplicationModule (ApplicationModule
appModule, boolean remove)

® Configuration.releaseRootApplicationModuleHandle (ApplicationMod
uleHandle handle, boolean remove)

What happens when a client creates an
application module instance?

It is always interesting to know what happens under the cover when a client calls
createRootApplicationModule on Configuration to grab an application module
instance. The following code snippet creates an application module using an
application module definition and configuration files:

//In the client class
String amDef = "com.packtpub.model.service.HRServiceAppModule";
String config = "HRServiceAppModuleLocal";

ApplicationModule am = Configuration.createRootApplicationModule (amD
ef, config);

[245]

Introducing the Application Module

Let's take a look at the underlying execution path when a client tries to grab an
application module instance. The following sequence diagram illustrates the

sequence of actions and collaboration between various framework components
when an application module is checked out from the pool to serve a new client:

Configuration

[Client] PoolManager

SessionCookie C] [i]

createRootApplicationModule
i

findPool

createPool create P

I

ApplicationModulePool createSesgionCookie

i

SessionCookie

useApplicationModule
instantiateResource

createApplicationmodule

createRootApplicationModule

ApplicationModule Assoicates Session

Starts application module life cycle

1 ApplicationModule Aquired database connection

ApplicationModule

ApplicationModule

When a client invokes createRootApplicationModule (String
qualifiedAMDefName, String configName) on the Configuration class, the

first task is to find or create the appropriate ApplicationPool that is responsible

for checking out (or pooling) the application module instance from the pool. The
Configuration class then requests a SessionCookie object, while passing application
pool instances as parameter. The session cookies are used by the framework to
identify unique client sessions across server requests and server instances. The

basic context for checking out an application module instance is in place by now.

The next step is to check out the application module instance from the

pool. The Configuration class triggers the check out process by calling
useApplicationModule () on a session cookie object. The call is then delegated to
the application pool instance. Before starting the check out process, the application
pool will check to see if the session cookie is already referencing an application
module instance of the type requested by the client and if available, then the
referenced instance will be given back to the caller and the rest of the steps in

the check-out process will be skipped.

[246]

Chapter 6

If there is no application module instance available in the checked out state for the
client, then the application pool instance will load the associated ConnectionStrategy
class which is responsible for the application module creation and database connection
for use. A server side session implementation will be created at this stage to hold the
session specific information such as user locale, transaction handler, environment
details, and security context. The session object is instantiated for each root application
module when the application module is activated. If there is no free instance available
in the pool and the pool size is allowed to grow further, then a new instance of the
application module is created to serve the client request. The framework prepares the
checked out instance ready for use by calling basic lifecycle methods to restore the
previous transaction state (if any) before returning the same to the caller.

The lifecycle of an application module

An application module plays a very crucial rule in deciding the scalability and
health of your ADF application. If you want to override the lifecycle methods of an
application module to change the default behaviour or to add extra functionalities,
it is essential to know what happens under the covers when an instance is checked
out from the pool to serve a request. Let us take a look at the details of an
application module lifecycle.

When a client requests an application module, the framework will try to identify an
instance to serve the new request using the following algorithm:

* Application module pooling logic will try to identify the client using the
Session Cookie that is carried along with the request. If it is a web client, a
session cookie is generated from the session identifier information present in
the HttpRequest object.

* If this is the first request from the client, then the default application module
pool implementation will try to allocate an available unreferenced instance
from the pool to the client. If this is not the first time that the client has
requested an application module, then application module pool will try
to identify the instance used previously and will allocate the same if it
is available.

* If all the instances in the pool are in use and the numbers of instances in
the pool are fewer than the maximum pool size and the recycle threshold for
the application module pool is not reached, then the application module pool
will create a new instance and allocate the same to the client.

* If the pool size is equal to the maximum pool size or recycle threshold is
reached and there are idle instances available in the pool, then the application
module pool chooses the least recently used one from the pool, passivate its
state, and activate the same for servicing the current request.

[247]

Introducing the Application Module

If all instances are in use and the pool size is equal to the maximum pool
then the resource application module pool will throw a check-out failure
exception to the caller.

After identifying the application module instance to serve a client request, the
framework will take it through the predefined phases to prepare it for use. The
following lifecycle callback methods defined on the application module are engaged
(in the same order as listed) when an instance is checked out and allocated for use by
a client. You can override these methods in your application module implementation
class based on the use case.

ApplicationModuleImpl::activate (Session session): This method is
invoked by the framework when a root application module is created. This
method can be overridden to add custom logic for initializing resources or
setting up the context at the root level.

ApplicationModuleImpl: :applyPersonalization (): This method is
responsible for applying the personalized definition (customization) added
for the component. Refer to the topic Personalized Business Components in
Chapter 5, Advanced Concepts on Entity Objects and View Objects, to brush up
the memory.

ApplicationModuleImpl::afterConnect (): This is invoked after

the application module database connection has been established. This
method may be overridden by applications to perform application module
initialization which requires database access.

ApplicationModuleImpl: :prepareApplicationModuleSession (Sessi
on session): This method prepares the application module session. This
method can be overridden to initialize the application module session that
should not be re-executed when the application module is reconnected.

ApplicationModuleImpl: :prepareSession(Session session): The
prepareSession (Session session) is invoked when an application
module is first created, and each time when an application instance is
associated with a user session. The application module is assumed to be in
connected state at this stage. This can be overridden to initialize the database
state as well the application state for the user session.

ApplicationModuleImpl: :prepareForActivation (Element amNode):
This method is called at the beginning of the activation cycle. You will
override this method if you want to add custom activation logic that
needs to be executed before the activation of view objects, or child
application modules.

[248]

Chapter 6

ApplicationModuleImpl::activateState (Element parent): The
activateState (Element parent) is called towards the end of the
activation cycle, after all the view object instances have been activated.

This method can be overridden to add custom activation logic or to retrieve
custom data from an XML node under the given parent element.

ApplicationModuleImpl::afterActivation (int activationMode):
This method is called after activating the application module and its
child components.

ApplicationModuleImpl: :activateConnectionState (Element parent):
The activateConnectionState (Element parent) is invoked at the end of
activation cycle as well as when an application module is reconnected with a
user session. Generally, developers may override this method to use custom
approaches for restoring state information. However, this is not going to
limit you in using the standard approach for restoring the state by reading
the parent elements passed as an input parameter into this method. If no
child nodes were added during pssivateConnectionState (Document doc,
Element parent), then the parent node would be null.

After serving the request for the client, towards the end of the request cycle, the
framework will check in the application module instance back to the pool. The
release mode property (RELEASE_MODE) set for the application module configuration
decides how this instance needs to be released back to the pool. The possible options
are as follows:

Stateful: This is the default release mode (also known as the managed
mode). In this mode, the application module pool will allocate the same
instance of the application module for the same data control if it is available
at the moment. If the previously used application module is busy or
unavailable, then a different application module will activate this data
control's state. The previous state of business components will be restored
when the framework uses a new application module instance to serve an
existing client.

Stateless: This mode is also known as unmanaged mode. In this mode no
state is preserved across requests from the same client. This is more of a
performant than the other two modes because of its stateless nature,
however this may not be an ideal option if the transaction state spans
across multiple requests.

Reserved: This guarantees that the application module will remain sticky for
a data control (client) and the same instance will be available throughout the

session. This is not recommended for a web application as it adversely affects
the scalability of the system.

[249]

Introducing the Application Module

Passivation activation of application modules

When an application module pool does not find any unreferenced entity instances
to serve a new request, the framework will check to see if the number of application
module instances in the pool which were released in the managed state has reached
the recycle threshold value. If the recycle threshold is reached, then the framework
will look for the least recently used (LRU) instance in the pool and will allocate it

to the current requestor. While doing so, it will passivate the chosen application
module instance. The framework passivates both transactional data and non-
transactional data attached to the application module. This list includes dirty

entity rows, current state of view objects such as current rows, applied view criteria,
bind variables, passivate enabled transient attributes, page ranging parameters,

row set state, query set at runtime, and dynamic structural changes performed

on business components. The state to be passivated is converted into XML and
saved in a passivation store which could be either a local file system or a database
configured using the property jbo.passivationstore in the bc4j . xcfg file. Once
the passivation is over, the framework will activate new client states on the allocated
application module instance. The activation mechanism restores the state from the
passivation store.

Programmatic passivation and activation of
custom data

The following example illustrates programmatic approach to passivate and

activate custom data present in an application module. This example overrides the
passivatesState (Document, Element) and activatesState (Element) methods
in an application module to make the regionid data available for the client even
after the passivation and activation cycle of the application module.

//In application module implementation class

/**
* Overridden framework method to passivate user data
* in XML format by appending to the parent node
*/

@Override

public void passivateState (Document doc, Element parent)

//This code snippet stores the data in USERDATA node
Element nodeUserData = doc.createElement ("USERDATA") ;
nodeUserData.setAttribute ("KEY", USER REGION) ;
nodeUserData.setAttribute ("VALUE",
getRegionId () .toString()) ;

parent .appendChild (nodeUserData) ;
super .passivateState (doc, parent) ;

[250]

Chapter 6

/**
* Overridden framework method to activate user data from
* XML snapshot, stored during passivation
*/
@Override
public void activateState (Element parent)
//This code snippet reads the data stored in USERDATA node

if (parent != null) {
NodeList nl = parent.getElementsByTagName ("USERDATA") ;
for (int i = 0; i < nl.getLength(); i++) {
Element e = (Element)nl.item(i) ;

String key = e.getAttribute ("KEY") ;
String value = e.getAttribute ("VALUE") ;
setRegionId(new Integer (value)) ;

break;

}

super.activateState (parent) ;

}

// regionId is made activation safe in this e.g
private Integer regionId = null;

private Integer getRegionId() {
return regionId;

private void setRegionId(Integer regionId) {
this.regionId = regionId;

Storing business data at user session level

When you build rich enterprise applications, it is a very common requirement to
have a mechanism to store some business specific data for a user session. Let's take
a look at some possible options for storing session data in the business service layer
without sacrificing the flexibility of the system.

Using a transient view object

A transient view object contains only transient attributes, whose values are
populated programmatically. This can be used to store user session specific
business data which needs to be accessed from the view layer or from other
business components.

[251]

Introducing the Application Module

The steps for building a transient view object is more or less the same for a normal
view object that we learned about in Chapter 4, Introducing View Object, with few
exceptions, discussed as follows.

To create a transient view object, build a view object by selecting the programmatic
data source. When you add attributes, make sure all the attributes are marked

as updatable and at least one attribute is marked as a key attribute. Generate the
implementation class for the view object and override the beforeRollback (Trans
actionEvent) and afterRollback (TransactionEvent) methods with an empty
method body. This will help you to avoid losing the data you stored in the transient
view object during transaction rollback and application module recycling.

As the transient view object is used as a data holder, there is no need to query

the data source at any point. To disable any queries on the view object, select the
General page of the overview editor. Expand the Tuning section, and in the Retrieve
from Database group box, select the No Rows option.

You will have to make sure that the transient view object that you use for holding the
session data is passivation safe. Transient view object attributes are not passivated by
default, as the attribute values can be easily recreated during activation. However,
this theory may not be valid if you use a transient view object as a value holder for
your session data, because in this case we do not keep track of the data source once
the transient view object is populated, and there is no way to recreate these attribute
values during activation. In such cases, we have to enable the default passivation
support for view objects provided by the framework.

To enable passivation support, double-click on a view object to open it in the
overview editor. On the General page, expand the Tuning section and select the
Passivate State checkbox which will passivate the view object state, such as bind
variable values and current row. To enable passivation support for all transient
attributes, select the Including All Transient Attributes checkbox displayed as
a child to the Passivate flag.

Alternatively, you can individually set the passivation state for transient view object
attributes. To do this, on the Attributes page, select the transient attribute you want
to passivate and in the Details tab, select the Passivate checkbox.

Using a user session data map

Another option for keeping session data is to make use of a user data map from the
session object in an application module. A session object is instantiated for each root
application module when the application module is activated. The following code
snippet is from an application module:

[252]

Chapter 6

//In application module implementation class

public void updateSessionWithRegionId(Integer regionId) {
Hashtable userdata = getSession() .getUserDatal() ;
userdata.put ("USER_REGION", regionId) ;

}

The same can be accessed through Groovy expression as follows:
adf .userSession.userData.USER_REGION

The above mentioned Groovy expression is useful when you want to initialize a bind
variable with some session level information set by the client, or if you need to set
the value from the user session data map for a transient attribute.

Using a client bound session map object

If you have some legacy web client code which uses javax.servlet.http.
HttpSession for storing session scoped business data, then the same can be accessed
from your business components using the oracle.adf.share.ADFContext class as
shown in the following code snippet:

ADFContext adfContext = ADFContext.getCurrent () ;
Map httpSessionMap = adfContext.getSessionScope () ;

However, you should be very judicious while using ADFContext to refer to client
bound session objects because these objects may be missing when you run unit tests
in the standalone mode; also, it may not be available for non web-based clients.

Using JDBC APIs in an application module

Although the declarative features of ADF business components will help you to
query database tables and update rows, in specific cases you will have to use raw
JDBC APIs by passing the declarative features while dealing with database objects.
An example is to call a stored procedure from custom business logic implementation
for performing specific tasks. The oracle.jbo.server.DBTransaction
implementation class exposes APIs for dealing with row JDBC APIs. This class
encapsulates database connections and transaction contexts. Let us take a look at
some examples on using JDBC APIs exposed through DBTransaction.

[253]

Introducing the Application Module

The following custom method defined in an application module illustrates the usage
of the java.sgl.CallableStatement statement for executing a stored procedure in
a data base.

//In application module implementation class

/**
* Find department details using department id. This method
* uses CallableStatement for executing stored procedure.
* @param departmentId
*/
public void findDepartmentById(Integer departmentId) throws
SQLException {
String stmt =
"call departments_ api.select department(?,?,?,?)";
// Create a CallableStatement for invoking stored procedure
CallableStatement cs =
getDBTransaction() .createCallableStatement (stmt, 0);
try {

// Register the OUT parameters and types
cs.registerOutParameter (2, Types.VARCHAR) ;
cs.registerOutParameter (3, Types.NUMERIC) ;
cs.registerOutParameter (4, Types.NUMERIC) ;

//Register IN parameter
cs.setObject (1, departmentId) ;

// Execute the statement
cs.executeQuery () ;

// Retrieve the column values
String deptName = cs.getString(2);

BigDecimal managerId = cs.getBigDecimal (3) ;
BigDecimal locId = cs.getBigDecimal (4) ;
// Add your code here for further processing
} finally {
if (cs != null) {
//Closing the statement
cs.close();

[254]

Chapter 6

The following custom method defined in an application module illustrates the usage
of java.sql.PreparedStatement for executing a SQL statement:

/**

*

*

*/

Finds employee id using email id. This method uses
PreparedStatement for executing SQL

@param email

@return

@throws SQLException

public Long findEmployeeIdByEmail (String email) throws SQLException

Long empId = null;

ResultSet rs = null;
PreparedStatement stmnt = null;
try {

int noRowsPrefetch = 1;
String query = "SELECT Emp.EMPLOYEE ID FROM EMPLOYEES"
+ " Emp WHERE Emp.EMAIL = ?";

//Create a PreparedStatement for SQL call

stmnt = getDBTransaction().

createPreparedStatement (query, noRowsPrefetch) ;

//Set the inpute parameter

stmnt .setObject (1, email);

rs = stmnt.executeQuery () ;

if (rs.next()) {
empId = rs.getLong(l) ;

}

finally ({

//Close the result set

if (rs != null) {
rs.close() ;

!

//Close the statement

if (stmnt != null) {
stmnt.close() ;

return empId;

[255]

Introducing the Application Module

The following methods defined in the application module commits and rolls back the
current transaction:

//In application module implementation class
/**
* Commit the transaction
*/
public void commitTransaction()
getDBTransaction () .commit () ;
}
/**
* Rollback the transaction
*/
public void rollbackTransaction()
getDBTransaction () .rollback () ;

}

Using save points for undo operations

An application module enables you to create save points within a transaction that
can be rolled back to without affecting any work done in the transaction before the
save point was created. These save points are within transaction scope only, and
will be removed when transaction commit or rollback occurs. The following custom
application module implementation uses passivateStateForUndo (String id,
byte[]l clientData, int flags) and activateStateForUndo (String id,

int flags) methods defined in ApplicationModuleImpl to illustrate the usage

of this feature.

public class HRAppModuleImpl extends ApplicationModuleImpl
implements HRAppModule {
// other code goes here...
/**
*This method save the state of application module and
* return save point id.
*/
public String passivateStateForUndo (String savePointId)
String savePoint = super.passivateStateForUndo (
savePointId, null, PASSIVATE_UNDO_FLAG);
return savePoint;
}
/**
* This method restores the state to the stave point
*/

public void activateStateForUndo (String savePointId) {

[256]

Chapter 6

super.activateStateForUndo (savePointId,
ACT IVATE_U'NDO_FLAG) H

}

Client side code for creating save points and restoring the same using the above
defined methods in the application module are as follows:

HRServiceAppModul hrAMImpl = getHRServiceAppModul () ;
boolean rollBackToSavePoint=false;

//Create save point

String spId = hrAMImpl.passivateStateForUndo (null) ;
//your business logic goes here

//Some operation fails, rollBackToSavePoint becomes true
rollBackToSavePoint = hrAMImpl.updateEmployeeData () ;
//Restore save point for undo operation
if (rollBackToSavePoint) {
hrAMImpl.activateStateForUndo (spId) ;

}

Programmatically configuring an application
module

An application module's properties are configured at design time using the
corresponding be4j . xcfg. Sometimes you will need to go beyond the design time
properties, and programmatically supply configuration parameters based on various
runtime parameters. An application module has support supplying configuration
parameters at runtime. Configuration properties can be set programmatically

by creating a Java class that implements the oracle. jbo.common. ampool.
EnvInfoProvider interface.

You can configure the application module to use the custom EnvInfoProvider class
by setting the fully qualified EnvInfopProvider implementation class as the value for
the jbo.envinfoprovider property by using the application module configuration
editor (in the Property tab). The framework will use this class to read overridden
configuration parameter values while initializing an application module. If you are
not familiar with the application module configuration editor, refer back to the topic
Overriding the default properties of an application module in this chapter.

[257]

Introducing the Application Module

The following example illustrates the usage of the custom EnvInfoProvider class
for setting the data source name onto an application module on the fly. This example
reads the data source name from http session data.

//Custom EnvInfoProvider implementation class

/**
* Dynamic EnvInfoProvider for an application module
*/
public class DynamicEnvInfoProvider implements EnvInfoProvider

/**

* This method gets engaged when invoked by the

* ApplicationPool

* to acquire dynamic application context before the

* applicationModule lifecycle event starts

*/
public Object getInfo(String infoType, Object env) {

if (EnvInfoProvider.
INFO_TYPE JDBC_PROPERTIES.equals (infoType)) {
//Read data source name from Http Session through

//ADFContext

Map session = ADFContext.getCurrent ().
getSessionScope () ;

Object dsName = session.get

(Configuration.JDBC_ DS NAME) ;
//Update the data source property

if (dsName != null) {
if (((Hashtable)env).
containsKey (Configuration.JDBC DS NAME)) {
((Hashtable) env) .
put (Configuration.JDBC DS NAME,
(String) dsName) ;

}

return null;

}

//Other methods goes here

[258]

Chapter 6

Programmatically building a master-child
view object

We have discussed an example for programmatically building entity objects and
view objects at runtime in Chapter 5, Advanced Concepts on Entity Objects and View
Objects, under the topic Building business components dynamically. We are revisiting
a similar topic with a slightly different use case. In the previous example, we were
discussing dynamic view objects built on top of dynamic entity objects. In this
section, we are going to see an example for programmatically creating SQL query
based view objects with master-child coordination enabled.

The following example defines two SQL query based view objects, DynamicDeptVvo
and DynamicEmpVvO, and DynamicDept EmpViewLink view link between them to
enable master-child synchronization. This example can be used as reference for
building a master-child UI at runtime.

//In application module implementation class
public void createMasterChildviewObjects() ({
// Create a new "model.views.DynamicDeptVO" view definition
ViewDefImpl deptViewDef = new ViewDefImpl (
"model.views.DynamicDeptVO") ;
// Define the names and types of the view attributes
deptViewDef .addViewAttribute ("DepartmentId",
"DEPARTMENT ID", Integer.class) ;
deptViewDef .addViewAttribute ("DepartmentName",
"DEPARTMENT NAME", String.class) ;
// Define the SQL query that this view object will perform
deptViewDef.setQuery ("SELECT Dept .DEPARTMENT 1ID, Dept .DEPARTMENT _
NAME FROM DEPARTMENTS Dept") ;

deptViewDef.setFullSqgl (true) ;
deptViewDef.setBindingStyle (
SQLBuilder.BINDING_STYLE_ORACLE_NAME);
deptViewDef.resolveDefObject () ;
// Create an instance of the new view definition,
// named "DynamicDepartments"
ViewObject deptView = createViewObject (
"DynamicDepartments", deptViewDef) ;
// Create a new "model.views.DynamicEmpVO" view definition
ViewDefImpl empViewDef = new ViewDefImpl
("model.views.DynamicEmpVO") ;
// Define the names and types of the view attributes
empViewDef .addViewAttribute ("EmployeeId",
"EMPLOYEE_ID", Integer.class) ;

[259]

Introducing the Application Module

empViewDef .addViewAttribute ("FirstName",
"FIRST NAME", String.class);
empViewDef .addViewAttribute ("LastName",
"LAST NAME", String.class);
empViewDef .addViewAttribute ("DepartmentId",
"DEPARTMENT ID", Integer.class) ;
// Define the SQL query that this view object will perform
empViewDef .setQuery ("SELECT Emp.EMPLOYEE ID, Emp.FIRST NAME, Emp.
LAST NAME, Emp.DEPARTMENT ID FROM EMPLOYEES Emp") ;
empViewDef .setFullSql (true) ;
empViewDef .setBindingStyle (
SQLBuilder.BINDING STYLE ORACLE NAME) ;
empViewDef .resolveDefObject () ;
// Create an instance of the new view definition,
//named "DynamicEmployees"
ViewObject empView = createViewObject (
"DynamicEmployees", empViewDef) ;
// Create a view link between these two new view instances
ViewLink empsInDepartment =
createViewLinkBetweenViewObjects (
"DynamicDeptEmpViewLink",
"EmployeesInDepartment",
deptView, new AttributeDef [] {
deptView.findAttributeDef ("DepartmentId") },

empView, new AttributeDef [] {
empView.findAttributeDef ("DepartmentId") },
DEPARTMENT ID = :Bind DepartmentId") ;

Using ADF Business Components with Java
EE components

You will have to mix and match various technologies while building complex
business models for an application. This is very essential when you are integrating
services exposed by multiple applications, or when you build next generation
applications reusing services exposed by the legacy systems.

[260]

Chapter 6

The following example illustrates a stateless session bean method that invokes
business methods from an application module. This example updates the
DEPARTMENT database table through Java Persistence APIs in the session EJB bean,
and passes the details about this operation to an application module method in order
to update the DEPARTMENT AUDIT table. Both EJB and the application module share
the same XA data source enabling two-phase commit for the database transaction.
If you see the following method, you may notice that the client does not call commit
on an application module, rather it only calls postChanges () on DBTransaction to
post changes without committing the database transaction. The commit is triggered
finally from the EJB method when it calls commit on the javax.transaction.
UserTransaction object.

//In SessionEJB implementation class

@Stateless (name = "SessionEJB", mappedName = "DemoSessionEJB")
@TransactionManagement (TransactionManagementType .BEAN)
@TransactionAttribute (TransactionAttributeType.REQUIRED)
public class SessionEJBBean implements SessionEJB, SessionEJBLocal {
@PersistenceContext (unitName = "EJBModel")
private EntityManager em;
@Resource
SessionContext sessionContext;
public Departments mergeDepartments (Departments departments) {
AuditAppModule am = null;
try {
UserTransaction userTxn = sessionContext.
getUserTransaction() ;
//Start user transaction in session EJB bean
userTxn.begin() ;
//Merge changes in session EJB Bean
departments = em.merge (departments) ;

//Invoke audit routine in application module (AM)
HashMap dataForAduit = new HashMap() ;
dataForAduit.put (DepartmentsAuditImpl .DEPARTMENTID,
new oracle.jbo.domain.Number (
departments.getDepartmentId())) ;
dataForAduit .put (DepartmentsAuditImpl . DEPARTMENTNAME,
departments.getDepartmentName ()) ;

String amDef = "model.audit.AuditAppModule";
String config = "AppModuleLocal";

[261]

Introducing the Application Module

//Create AM instance
am = (AuditAppModule)Configuration.
createRootApplicationModule (amDef, config) ;

//Pass data to AM method to update desired database tables
am.createDepartmentsAudit (dataForAduit) ;

//Post Changes to DB without committing transaction
am.getDBTransaction () .postChanges () ;

//Commit the transaction in EJB, which will commit transaction
//in AM as well, because both use same XA Datasource
userTxn.commit () ;
} catch (Exception ex) ({
ex.printStackTrace () ;
} finally {
if (am != null)
Configuration.releaseRootApplicationModule (
am, false);

}

return departments;

Summary

In this chapter we learned about the generic concepts of application modules and
their architecture and configuration. We also discussed many examples for using
application modules. With this chapter, your understanding of business component
fundamentals should be complete. Note that we will be revisiting the fine-tuning
parameters available for application modules in Chapter 12, Oracle ADF Best Practices,
with real life use cases.

In the coming chapters our focus will be more towards consuming the services
exposed by the business components from the UI.

[262]

Binding Business Services
with the User Interface

In the previous chapters, we discussed about the business service implementation
by using ADF Business Components. In this chapter, you will learn to bind the user
interface for the data model built from ADF Business Components. We will discuss
the following topics in this chapter:

* Binding model data with user interfaces

* Building a simple data bound web page

* What happens when you drop a data collection on a page?
* Browsing through page definition files

* What happens when you access a fusion web page?

* Invoking an application module from a Java servlet

* Adding custom phase listeners

Introduction

The great advantage of using the ADF framework is its declarative support for
building a user interface (UI) for business services. The ADF data binding layer
enables you to build a UI for a data model through a visual and declarative
programming model. The ADF data binding layer offers data binding support and
out-of-the-box infrastructure for common UI functionalities such as navigation over
rows, range fetching, built-in CRUD operations, and state management. If you want
to go beyond the declarative features by overriding the default behavior of specific
functionalities, you can use the ADF binding APIs provided by the framework.

Binding Business Services with User Interface

The ADF binding layer is also referred to as the ADF Model (ADFm)
o

and the two words are used interchangeably in this book.

Binding model data with user interfaces

Presenting business data to end users without sacrificing the usability and
scalability of the system is very important for any enterprise application. When
you wire data from the business services implementation to the Ul, in general,
there are two tasks involved:

Invoking business services for data: Typical implementation may contain
some infrastructure code to invoke business services for data access. The
service invocation code may vary with technology used for building
business services.

Binding the data with UI components: Once the business data is read, the
application should populate data on the UI without losing the meaning.

The ADF model performs the preceding tasks in a more generic way by abstracting
the infrastructure code required for service invocation and data binding from
developers. ADF uses the following concepts to bind the Ul with the data model:

Data control: Data control acts as a proxy cum adaptor implementation for
the business services. In other words, data control invokes business services
and returns the result wrapped in a generic data structure to be used by

the binding layer. Data control usage varies with the technology used for
building business services. The most commonly used data controls include
the following:

° ADF Business Components Data Control: This is used with
ADF Business Components.

° JavaBean Data Control: This is used to access data from the
Plain Old Java Object (POJO) class.

° EJB Data Control: This is used to access data from the E]B
Session Bean.

° URL Service Data Control: This is used to consume the data
stream from a specified URL. They are non-updatable by nature.

° Web Service Data Control: This is used to access data from the
Web Services Description Language (WSDL) for a web service.

° JMX Data Control: This is used to access Java Management
Extensions (JMX) MBeans from an MBean Server.

[264]

Chapter 7

Placeholder data control: Placeholder data control is useful to mimic
the model data when you choose to build the UI before the actual
model. Later this can be replaced with the real data control when it
becomes available.

Note that the above list contains only commonly used data controls.
In real life application development, you may see more data control
implementations, each dealing with a specific service implementation
such as Oracle Essbase, Business Activity Monitoring (BAM), or
Universal Content Management (UCM).

* Declarative data binding: Declarative data bindings abstract the details
of accessing data from data collections in a data control and the details
of invoking its operations. The framework uses different data binding
definitions based on the underlying data model for each UI component.
Value bindings will be populated at runtime whenever they are referenced
by the components through EL expression.

The following diagram represents the layered architecture of the ADF Model. You
will notice that the ADF framework uses the ADF binding layer (ADF Model) for
accessing the data exposed by the business services. The ADF binding layer deploys
different data controls based on the technology used for building business services.

* Department Id 40
"""""" * Department Name | Human Resources
Manager Id 203
Location Id | 2400 Web Page
Flagged Record

First Previous | MNext | Last | Createlnsert Commit

ADF Model

Bindings

Data Centrol

Service Implementation

[265]

Binding Business Services with User Interface

Building a simple data bound web page

Let us build a simple data bound web UI to get a feel for the visual and declarative
development experience offered by the JDeveloper IDE along with Oracle ADF
framework. During this exercise, we will also take a look at the metadata files
generated by the IDE to be used by the runtime.

To build a fusion web application workspace, follow these steps:

1. Create a fusion web application by selecting the New Application option
within the application navigator tab in the JDeveloper.

2. This will display the New Gallery dialog window with a set of predefined
templates targeting various technologies. For ADF web applications, select
the Fusion Web Application template and click on OK.

3. Enter the application package prefix as com.packtpub.adfguide.ch7.
On the next page, enter the model project name as HRDataModel.

4. Click on Finish to save the changes.

As we have already discussed about the generation of business components
(entity object, view object, and application module) in the previous chapters,
we are skipping the step for business component creation. This example uses
entity objects and view objects built using the DEPARTMENTS and EMPLOYEES
tables from the HR schema. If you need a quick brush-up on generating business
components, refer to the topic Building a simple business service in Chapter 2,
Introduction to ADF Business Components.

Once you generate an application module along with the desired data model, the same
will be exposed in the Data Controls panel. The following screenshot displays the
Data Controls panel, exposing the data model used for our current example. It exposes
the Departments and Employees view object instances to be used by the client.

-| Data Controls i
EI% HRServiceAppModuleDataControl
- Departmentld

@I Departmentiame

- LocationId

EI ManagerId

{ﬂ EmployeesForDepartment
D Operations

D Mamed Criteria

E]---{ﬂ Employees

E]---D Operations

L3

[266]

Chapter 7

To build a web page, perform the following steps:

1. Right-click on the ViewController project and select New | Page.

2. In the Create JSF Page dialog window, enter a logically meaningful name
for the page and select the document type as Facelet. In the Page Layout tab,

select the Create Blank Page option and click on OK to save changes.

When you work on real life applications, you can create a custom page template and
use the same for building web pages.

To learn more about Page Templates and ADF Faces Components,
refer to Oracle Fusion Middleware Web User Interface Developer's
Guide for Oracle Application Development Framework. To access the
documentation go to http://www.oracle.com/technetwork/
developer-tools/jdev/documentation/index.html.
Navigate to Oracle JDeveloper and ADF Documentation Library
and then choose Web User Interface Developer's Guide. Use the
search option to find specific topics.

You can use the drag-and-drop offerings from JDeveloper to visually lay out controls
on a page. For example, to build a Ul table displaying data collection from the
Departments database table, you just need to drag the instance of the Departments
view instance from the Data Controls panel and drop on the page by choosing the

desired display component available in the context menu. In this example, we have
used the ADF Form component along with navigation controls for displaying the
collection returned by the Departments view instance:

Applicatinn Mavigator *

=] deparh‘nent.jspx x

ADFDevGuideCh7

+| Projects

+| Application Resources

—| Data Controls

B% HRServiceAppModuleDataControl

-3~
Bl ®V-E-

W -

Show ~ |Match Current Monitor Resolution 'l |§| |

G

'

{58 Departmentld

{578 Departmentiame

{58 Locationld

{578 Managerld

; E EmployeesForDepartment
({7 Operations
D Named Criteria

]E Employees

+--[] Operations

>

jspirg

Create
i Carousel

Gantt

Gauge...
Geographic Map
Graph...

Hierarchy Viewer...
Multiple Selection
Mavigation
Single Selection
Table

Thematic Map...

Tree

Cancel

»

ADF Form...

ADF Read-only Form...
ADF Search Form

dl ~ > af:iform#f1

i

Design| Source Bindings Preview History

[267]

Binding Business Services with User Interface

The preceding steps are enough to make your page work. To run the page, right-click
on the page and select Run.

If you are a beginner to ADF, you may have many questions in your mind by

this time —is a view object instance a data collection? What happens when a data
collection is dropped on a page? What happens under the covers when we run a
data bound page? Stay tuned, the rest of this chapter will answer all these queries.

Is a view object really a data collection?

This may be the first question that you may ask when you start using view object
instances exposed through the data control panel for building a Ul

Yes, the view object instance is a data collection (row set) in itself. To understand this
point let us take a step back and take a closer look at the structure of the view object.
The following class diagram represents the oracle.jbo.server.ViewObjectImpl
class and its associated infrastructure classes namely oracle.jbo.server.
ViewRowSetImpl and oracle.jbo.server.ViewRowSetIteratorImpl.

= winterfacen
Rowlterator

] winterfacen
NavigatableRowlterator

] winterfacen
RowsSetlterator

ViewRowSetlteratorimpl 5 winterfacen

RowSet
T 1

ViewRowSetimpl

ViewObjectimpl

[268]

Chapter 7

The following list discusses the roles of each class in brief from the above diagram:

* A view object (oracle.jbo.server.ViewObjectImpl) contains logic for
controlling the query execution.

* A view object uses a row set class (oracle.jbo.server.ViewRowSet Impl)
to manage the collections of view rows read from a query. A view object may
have multiple row sets —a default (primary) row set and secondary row sets.
When the client calls executeQuery () on ViewObjectImpl, the default row
set is refreshed to hold the query result.

* RowSet uses an internal row set iterator (oracle.jbo.server.
ViewRowSetIteratorImpl) class to iterate over the collection. This saves
you from calling a different API to find the iterator object for the row set.

The above classes are the real work horses, which manage the view row collection
when you execute a view object and iterate over rows from a query. If you see the
class diagram for the view object that we discussed a while ago, you may notice that
the viewObjectImpl class itself implements the Rowset interface. Wondering why?
This is done to improve the usability of the view object so that you really do not need
to use a separate collection class for reading the queried rows and for iterating over
them as well. In fact, the default view object implementation class (ViewObjectImpl)
does not really provide complete method body implementations for the Rowset
interfaces. The methods implementing the Rowset interface in a ViewObject Impl
simply delegate all the calls to an internal default row set implementation object
(ViewRowSetImpl). This implementation gives the feel of data collection for a view
object class and this is the reason why you are able to iterate over a view object
instance, using Iterator APIs. An example is here:

//In application module implementation class

Public void readEmployeeRows () {

//Get the view object,

//execute it and iterate over the rows
ViewObject employeeVO= getEmployees() ;
employeeVO.executeQuery () ;
while (employeeVO.hasNext ())

Row row = employeeVO.next () ;
//Business logic goes here

}

[269]

Binding Business Services with User Interface

What happens when we drop a data
collection on a page?

When we drag a view object instance (data collection) from the Data Controls
panel and drop it on a page, JDeveloper IDE creates (or updates, if existing)
binding metadata XML files for holding binding definitions. IDE performs
the following tasks:

* IDE adds ADF Faces Components to the JSF page. Common attributes of the
UI components are defaulted by using the attribute definitions present in the
model, referred through Expression Language (EL).

. Expression Language is used to access underlying the model
% component in the ADF Faces pages. To learn general concepts
s on Expression Language, go to http://java.sun.com/
products/jsp/reference/techart/unifiedEL.html.

* Itcreates DataBindings.cpx if it is not found in the default view package
under the ADFm source directory. The default location of the ADF model
source is the adfmsrc folder located under the view project.

e Itcreates adfm.xml if it is not found in the META- INF folder under the
adfmsrc directory. This is considered as a registry of all metadata registries
used by the view project. When IDE creates a data binding cpx file
(DataBindings.cpx), an entry is made in adfm.xml to keep track of all the
cpx files present in a web application.

* It creates the page definition XML (<PageName>PageDef .xml) file if it is not
already present for the page. This is located in the pageDefs folder under
the view project package, which is found under the adfmsrc directory. This
file contains the binding metadata for each data bound UI element present
on the page. When IDE creates a page definition file for the JSF page, it
also adds a mapping entry between the JSF and page definition file in the
DataBindings.cpx file.

* It adds the required library dependencies to the view project.

* Itupdates web.xml to add runtime configurations such as ADFBindingFilter,
which is required by the ADF Faces Components runtime.

[270]

Chapter 7

The following diagram illustrates how a Ul component is EL-wired to the attribute
definition present in a view object. The page definition file for the web page contains
metadata for identifying the data collection (view object instance) for an attribute.
The ADF binding layer uses detailed configurations present in DataBindings. cpx to
load the right application module usage for the client. The view usage entry present
in the application module tells about the view object instance that backs the data
collection displayed in the UL

<af:inputText value="#{bindings.DepartmentName.inputValue}"
label="#{bindings.DepartmentName.hints.label}”
required="#{bindings.DepartmentName.hints.mandatory}"”
columns="#{bindings.DepartmentName.hints.displayWidth}"
maximumlength="#{bindings.DepartmentName.hints.precision}”
shortDesc="#{bindings.DepartmentName.hints.tooltip}"” id="it2">

<fivalidator binding="#{bindings.DepartmentName.validator}"/> ADF Faces{View)
</af:iinputText>>

Bindings 4 / x Executables t+ / X Data Control
Departmentld E wvariables % HRServiceAppModuleDataControl
N — &
@ Managerld {;| Employees
(&) Locationid [updateDepartmentDeatis(Row)
First

: Last
H updateDepartmentDeatils

= DepartmentVo =] HRSemiceAppMadule
Departmentld : Integer +———Departments «

Departmenttame : String Employaes

Managerld : Integer EmployeesForDepartment

Locationld : Integer

Application Module{Business Service)

Taking a closer look at the ADF Model
metadata files

This is in continuation with the discussion from the last section. In this section, we
will take a closer look at the metadata files used by ADF to wire the UI with business
services. An Oracle Fusion web application uses various metadata XML files to
configure the runtime behavior of the system.

[271]

Binding Business Services with User Interface

The following diagram represents the metadata XML files used for a Fusion
web application:

Data Control Files

—> ADF BC Application Module

adfm.xml

DataBindings.cpx

adf-config.xml

<PageName>PageDef.xml

Data Binding Files

Web Configuration Files

web.xml

faces-config.xml

adfc-config.xml

Taskflow-definition.xml

adf-settings.xml

Let us take a look at the important metadata files used by the ADF Model layer.

adfm.xml

The adfm.xml file is a registry of registries used by the framework to quickly find all
metadata registry files used at runtime. This registry XML file records four types of
metadata files:

Data binding registry (DataBindings. cpx)
Data control registry (DataControls.dcx)
Business component service registry (bc4j .xcfqg)

Business component project registry (<ModelProjects>.jpx)

[272]

Chapter 7

When you generate data binding or data control, the adfm.xm1 file immediately
records corresponding . cpx and . dcx file entries. However, ADF Business
Components registry files, such as . jpx and .xcfg files, are not recorded in the
adfm.xml file in real time. The . jpx and .xcfg files are updated only after a compile
and/or deployment. In effect, during design time, your application source may

not have the correct version of adfm.xml —only the final artifact generated for
deployment will have the correct version with all entries. Here is a sample

adfm.xml file that contains entries for the metadata files used in an application.

Note that this sample is copied from the final artifact—you may not see bc4j .xcfg
and <ModelProjects>.jpx entries in adfm.xml during design time:

<?xml version = 'l1.0' encoding = 'UTF-8'?>

<MetadataDirectory xmlns="http://xmlns.oracle.com/adfm/metainf"

version="11.1.1.0.0">
<DataBindingRegistry
path="com/packtpub/adfguide/ch7/view/DataBindings.cpx"/>
<BusinessComponentServiceRegistry
path="com/packtpub/adfguide/model/service/common/bc4j.xcfg"/>
<BusinessComponentProjectRegistry
path="com/packtpub/adfguide/model /HRDataModel . jpx"/>

</MetadataDirectorys>

DataBindings.cpx

The DataBindings. cpx file defines the runtime binding context for the entire
application. This file contains mapping between page and page definition files,

and metadata definition for the data control usage. For example, the following
DataBindings. cpx file displays the mapping between the dept . jsf and view.
pageDefs.deptPageDef files. The data control usage AppModuleDataControl listed
in this . cpx file contains metadata for invoking the underlying application module.

-] Page Mappings

path usageld
fdept.isf view_deptPagelDef

-| Page Definition Usages

id path
E] view_deptPageDef view.pageDefs.deptPageDef

-] Data Control Usages
id
E AppModuleDataContral

[273]

Binding Business Services with User Interface

When you generate a deployable artifact (JAR file) for the view projects, the
DataBindings.cpx file will be stored in a default package folder from the
root without the adfmsrc folder.

\ Note that if you have multiple view controller projects in your Fusion
~ web application, make sure each project follows different package names.
Q This ensures that, at runtime, DataBindings . cpx from one project does
not override an other one with the same package name.

adf-config.xml

The adf-config.xml file provides a central metadata file to manage
application-wide configuration data. This file is located in <Applications/.

adf /META-INF/adf-config.xml and there should be only one such file in the
application. When you deploy an ADF application as EAR, adf-config.xml will
be available at the ear class loader level —hence available to all modules contained
in that application. This file is designed to contain application level configuration
that can be set at deployment time and changed at runtime.

The application's adf-config.xml contains the following configuration entries:

* MDS configuration

* ResourceBundle override information
* Security context

* Application UID

The oracle.adf.share.ADFConfig class represents the runtime representation
of the adf -config.xml file. ADFConfig is a customizable document and it uses
the metadata service (MDS) to persist customizations. Updates to ADFConfig
are checked and updated, if needed, at the start of each HTTP request.

The schema for adf -config.xml can be found in the adf -share-
4 support . jar file as oracle/adf/share/config/schema/
%“ config.xsd. The adf -share-support. jar file is located in the
’ <JDeveloper Home>/oracle common/modules/oracle.adf.
share xx.x.xfolder.

[274]

Chapter 7

adf-settings.xml

ADF Settings is designed to store project-level or library-level settings for view
layers such as ADF Faces help providers, phase listeners, MDS web-app prefix,
and web cache configuration information. You cannot alter the configuration
settings for this file during or after application deployment. This file is located
in the <application>\<ViewController>\src\META-INF directory.

Browsing through the page definition file

We have already discussed the creation of the page dentition file when dropping
data collection on a page. The following screenshot displays a typical page definition
file in the structure window of JDeveloper:

E}E] departmentPageDef
I:I parameters
I:I executables
|:| bindings

In this section, we will analyze the different entries in a page definition file and their
usage at runtime.

Parameters

The <parameterss section in the page definition file allows you to define parameter
binding objects that other bindings or UI components can refer. In real life, you may
use this section to define parameters whose value is referenced from multiple places
in a page definition file.

Executables

The <executables> section defines executable items that get executed during the
ADF page lifecycle. Note that the data collections used in the page are refreshed
through appropriate executable binding entries. The following are the executable
binding objects supported by the framework:

* Iterator: The <iterators> section binds to an iterator object that iterates
over the data collection exposed through data control. An example for a
data collection is a view object instance in the data control panel. The
iterator binding definition decides how and when to refresh the attached
data collection during a page lifecycle.

[275]

Binding Business Services with User Interface

Method iterator: The <methodIterators> section binds to an iterator object
that iterates over the data collection returned from a custom method exposed
through data control.

Variable iterator: The <variableIterators> section binds to an iterator
object that exposes all the variables in the page definition, which other
bindings can reference. Variable iterators include method parameters and
scalar return values of custom methods exposed through data control.

Invoke action: The <invokeActions> section binds to a built-in action or
method action binding present in the binding section of the page definition
file. This is useful if you want to execute a method action during the lifecycle
of a page for each request from the browser.

You should keep the following points in mind while using this binding in
the application:

° invokeAction is executed for each request from the web client. Use
the appropriate Refresh property for the invokeAction binding to
decide the lifecycle phase at which the binding is refreshed.

° If the method contains page initialization logic and it is supposed
to be executed only once during the page load, check the feasibility
of using a method call activity in the navigation flow definition
(bounded or unbounded task flow XML file), before the page renders,
to invoke the method instead of using invokeAction. If method call
activity is not a viable option for you, make sure that the framework
is not triggering the invokeAction executable multiple times during
the page lifecycle by adding the appropriate refreshCondition.

Page: The <page> binding is used to refresh the data binding for the page
template. This entry will appear only if the current page is built by choosing
a data bound page template. The page binding executable is refreshed during
the Prepare Model phase. During this phase, the binding container for the
template is created based on the template's page definition file, and it is
added to the binding context.

Search region: <searchRegion> defines the executable binding definition for
the query component and Query By Example (QBE) criteria that appears on a
Ul table. This binds the named view criteria to the iterator for data collection.

Task flow: <taskFlow> defines the binding for the task flow that is
embedded in a region. During the page lifecycle, the framework
instantiates the binding container for a region's task flow.

[276]

Chapter 7

Multitask flow: <multiTaskFlows defines the binding for an unknown
number of task flows whose IDs are decided at runtime. This is useful when
you have a page that contains an unknown number of regions. An example
is the dynamic panelTabbed component where each tab is a region, whose
contents are decided at runtime.

Bindings

The bindings section in a page definition file defines value bindings as well as
action bindings for a web page. Value bindings bind the UI with the attribute value
returned by an iterator, and action bindings bind component actions (events) with
operations from the underlying data model exposed through data control. ADF
supports the following binding types:

Action: The <actions> binding defines bindings for built-in operations on the
row iterator object as well as on data control.

Method action: The <methodAction> binding defines bindings for custom
methods exposed through data control.

Attribute value: The <attributevValues> binding defines the binding for
accessing attribute values of the currently selected row in a data collection.
Note that attribute binding is accessed through the iterator executable.

Boolean value: The <button> binding (also known as Boolean binding)
defines the bindings for attribute types whose value takes the form of
checked or unchecked states.

Data visualization components bindings: ADF provides data binding
supports for the following graph types:

° Map

¢ Gantt
° Gauge
° Graph

° PivotTable

List: The <1ist> binding defines the bindings for list of items. The list
binding definition can refer to the model-driven list, static list, or dynamic
list. ADF also supports a variant of list binding, the <1istofvalues>
binding, which offers more options on the Ul such as lazy loading, search
and select, and range fetching.

[277]

Binding Business Services with User Interface

* Tree bindings: The <tree> binding defines the binding for nested data
collections that are used for populating hierarchical UI components such
as trees and hierarchy viewer components. The tree binding even works
for single-level collections as well. When you drag-and-drop a collection
as a table, JDeveloper generates tree binding although the data collection
is not hierarchical.

* Table binding: The <table> binding defines the binding for a single-level
collection of data.

In the next chapters, we will learn more about each of these binding entries and
their properties.

Using the binding editor

When you build the Ul by dropping the data collection from the Data Control panel,
JDeveloper generates necessary bindings behind the scenes. This feature helps you to
build basic data bound pages, and mostly you do not really need to create bindings
explicitly. However, if required, you are allowed to explicitly define bindings or edit
the existing definitions.

To define bindings, open the page definition file in the overview editor and select
the Bindings and Executables tab. You can find options to create, edit, or delete the
control binding entries in the Bindings panel. Similarly, to manually edit executable
bindings, use the edit options in the Executables panel. If required, use Property
Inspector to override the properties of the bindings or executables definitions.

To define parameters used in a page, use the Parameters tab in the overview editor.

EemplﬂveePageDefa(ml x | E]
Q
Page Data Binding Definition

This shows the Oracle ADF data bindings defined for your page. Select a binding to see its relationship to the underlying Data Contral.

Data Binding Registry: com/packtpub/adfauide fch7 fview /DataBindings. cpx

Bindings and Executables Contextual Events ~ Parameters

Bindings % 7 X Executables o 7 XK Data Control

T | e -
...... E EmployeesIterator —I_._

HRServiceAppModuleDataControl

{E Departments
findEmployeeMameByld{Integer)
findEmployeeMamesByCity(String)
e updateDepartmentDeatis(Row)

Overview | Source History ['_

[278]

Chapter 7

A detailed discussion on page definition binding entries can be found
under the topic Oracle ADF XML Files in the Appendices section in Fusion
Developer's Guide for Oracle Application Development Framework. To access
% the documentation go to http: //www.oracle.com/technetwork/
’ developer-tools/jdev/documentation/index.html. Navigate
to Oracle JDeveloper | ADF Documentation Library and choose Fusion
Developer's Guide.

Programmatically accessing page binding

elements

Although declarative data binding support provided by the framework is good
enough for most of the use cases, there may be some scenarios where you may

want to go beyond the declarative features to achieve the desired functionality

such as performing some pre-processing before invoking method binding, accessing
model attribute binding values from Java classes, or programmatically refreshing the
data collection. You will have to use ADF Model APIs for such use cases. This section
discusses about using ADF Model APIs for accessing page definition binding entries
from the Java code.

Accessing binding container

The BindingContainer class represents Java representation of the page definition
file. You may need to access the binding container object to read the bindings or
executable entries present in the page definition XML at runtime. For example,

to programmatically execute a method exposed through data control from your
managed bean code or to refresh an iterator object bound to a view object instance,
you must get the binding container object first. The following code snippet illustrates
how you can programmatically access the current binding container object:

//In managed bean class
/**
* This method returns BindingContainer for the current page
* @return
*/
public BindingContainer getBindingContainer () {
// BindingContext is a container object that holds a list
// of available
// data controls and data binding objects. It is the Java
// representation of all cpx files marked in your
//adfm.xml file

[279]

Binding Business Services with User Interface

BindingContext bindingContext = BindingContext.
getCurrent () ;
return bindingContext.getCurrentBindingsEntry () ;

Programmatically accessing the parameter
binding
You can define parameters by choosing the Parameters tab in the overview editor

of a page definition file. Consider the following parameter definition present in the
page definition file:

<pageDefinition...>
<parameterss
<parameter id="DeptIdParam" value=
"${viewScope.deptId != null ? viewScope.deptId : 10 }"
evaluate="inPrepareModel"/>
</parameters>

</pageDefinition>

In some scenarios, you may need to read this parameter value from the Java code
in order to pass this value to a business method or to third-party service APIs.
The following code snippet illustrates how you can access the parameter binding
definition from Java code, using ADF binding API:

//In managed bean class

//Gets Binding Container
BindingContainer bc = getBindingContainer() ;
Map map= bc.getParametersMap () ;
Long deptIdParam =(Long)
((DCParameter)map.get ("DeptIdParam")) .getValue() ;

Programmatically executing method action binding

Consider the following custom method definition in the application module
implementation class, which is exposed through data control to be used by the client.

public Row updateDepartmentDeatils (Row departmentRow)

[280]

Chapter 7

When you drop this method on to a page as a command button, IDE generates a
<methodAction> binding as shown in the following code snippet:

<pageDefinition...>

<bindings>

<methodAction id="updateDepartmentDeatils"

InstanceName="data.HRServiceAppModuleDataControl.dataProvider"
DataControl="HRServiceAppModuleDataControl"
RequiresUpdateModel="true" Action="invokeMethod"
MethodName="updateDepartmentDeatils"
IsViewObjectMethod="false"
ReturnName="data.HRServiceAppModuleDataControl.
methodResults.updateDepartmentDeatils
HRServiceAppModuleDataControl dataProvider
updateDepartmentDeatils result"s>

<NamedData NDName="departmentRow"
NDValue="#{bindings.Departmentslterator.currentRow}"
</methodActions>
</bindings>
</pageDefinition>

This can be wired to actionable UI components, using EL expression. What if
you want to execute this method from your managed bean code along with some
client-side business logic? The following example illustrates the usage of ADF
binding APIs for accessing methodAction or action binding, and executing the
same. Note that this example uses the preceding method action binding to access
the updateDepartmentDeatils (Row) method in the application module.

//In managed bean class
public void updateDepartmentRow (Row currentDeptRow) {
//Gets Binding Container
BindingContainer bc = getBindingContainer () ;
//Gets the Method Action binding with the given name.
OperationBinding opb =
bc.getOperationBinding ("updateDepartmentDeatils") ;
//Pass the Parameters
opb.getParamsMap () .put ("departmentRow", currentDeptRow) ;
//Execute the method and store returned value in
//return Value variable
Object returnValue = opb.execute() ;
//Any exception is thrown by the method?
if (opb.getErrors().isEmpty()) {
//No exception, Operation is success
} else {

[281]

Binding Business Services with User Interface

//Exception is thrown from the method, handle it here
//OperationBinding: :getErrors () return list of JboException
List errorList = opb.getErrors();

//Alternative path 'on error' go here

Accessing the list control binding

When you drop a view object instance with an LOV-enabled attribute on to a page
as an ADF Form, JDeveloper generates list binding for the LOV-enabled attribute
as shown in the following code snippet:

<pageDefinition...>

<bindings>
<list IterBinding="EmployeesIterator" StaticList="false"
Uses="LOV_DepartmentId" id="DepartmentId"
DTSupportsMRU="false" SelectItemValueMode="ListObject"/>
</bindings>
</pageDefinition>

You can make use of appropriate ADF binding classes for accessing list binding used
by the LOV component in the UL The following code snippet illustrates the usage

of ADF binding APIs for accessing list binding. This example reads the list binding
object and finds the selected item in it:

//In managed bean class
public Integer getSelectedDepartmentId () {
BindingContainer bc = getBindingContainer() ;
//Get the list binding object
JUCtrlListBinding lb = (JUCtrlListBinding)bc.
getControlBinding ("DepartmentId") ;
//Get the selected row
Row selectedRow = (Row)lb.getSelectedvValue() ;
//Read the desired attribute from the row.
Integer deptId= (Integer)selectedRow.
getAttribute ("DepartmentId") ;
return deptId;

[282]

Chapter 7

Accessing the attribute binding

When you drop a view object as an ADF Form on to a page, IDE generates an
attribute value binding for each attribute displayed in the UI The following is
an example:

<pageDefinition...>

<bindings>
<attributeValues IterBinding="DepartmentsIterator"
id=" DepartmentId"s>
<AttrNames>
<Item Value="DepartmentId"/>
</AttrNames>
</attributevValues>
</bindings>
</pageDefinition>

To access the attribute value from the client side, you can use the attribute binding
class. The following example illustrates the usage of ADF binding APIs for accessing
attribute binding;:

//In managed bean class

public Integer getDeptAttributevalue ()
BindingContainer bc= getBindingContainer () ;
//Access Attribute binding for DepartmentId
AttributeBinding departmentIdBinding =

(AttributeBinding)bc.getControlBinding ("DepartmentId")

Integer deptlId=(Integer)departmentIdBinding.getInputValue () ;
return deptId;

Accessing the iterator binding and associated view
object

The JDeveloper IDE generates an iterator binding definition in the page definition
file when you drop a data collection from the data control panel on to a page. The
iterator binding decides when to execute the underlying view object for populating
the data bound Ul components. Here is an example:

<pageDefinition ...>
<executables>
<iterator Binds="Departments" RangeSize="25"
DataControl="HRServiceAppModuleDataControl"
id="DepartmentsIterator" ChangeEventPolicy="ppr"/>
</executables>

</pageDefinition>

[283]

Binding Business Services with User Interface

In some use cases, you may need to access the iterator binding object from the
client-side code in order to programmatically execute the underlying view object
or to get the currently displayed row. The following example illustrates the usage
of ADF binding APIs for accessing the iterator binding. This example executes the
iterator programmatically:

//In managed bean class
public void refreshlIterator () {

//Gets Binding Container

DCBindingContainer bc = (DCBindingContainer)
getBindingContainer () ;

//Gets the Iterator binding.

DCIteratorBinding iteratorBinding = bc.
findIteratorBinding ("DepartmentsIterator") ;

//Execute VO query by executing iterator

iteratorBinding.executeQuery () ;

//To gets the underlying view object for the itertaor

//ViewObject vo = iteratorBinding.getViewObject () ;

What happens when you access a Fusion
web page?

The ADF Faces is extended from JSF technology with improved usability. When a
client requests a page, the framework executes standard JSF lifecycle phases along
with an extended ADF page lifecycle. In this section, we will discuss the sequence
of ADF page lifecycle phases that starts when a request comes on the server and
continues until the page is returned to the client.

When a user tries to access a data bound ADF Faces page, the basic flow of
processing the web page request on an application server is as follows:

1. When a client (for example, a web browser) requests a page, the web server
inspects the application name present in the URL and delegates the request
to the appropriate web application deployed on the server. Once the request
is routed to the target application, that application takes over the request
processing job. A Fusion web application uses the Faces Servlet (javax.
faces.webapp.FacesServlet) to control the processing of a request. This is
enforced through the following servlet mapping entry in the web . xml file:
<servlet-mappings>

<servlet-name>Faces Servlet</servlet-name>

<url-pattern>/faces/*</url-patterns>
</servlet-mapping>

[284]

Chapter 7

The above entry tells the server to use the Faces Servlet for URLs, which
follow the /faces/* pattern. This basic configuration is good enough to
make a typical JSF page to work. The ADF Faces framework is extended from
JSF with extra features such as declarative data bindings and an enhanced
security model that calls for pre-processing the request in order to initialize
the binding context and perform a security check before transferring the
control to the Faces Servlet. This is achieved through adding servlet filters for
the Faces Servlet. You will find the following filters in a typical ADF Faces
application's web . xm1:

° JPSfilter: This filter is used to set up the Oracle Platform Security
Services (OPSS) policy provider. This filter intercepts each request
and challenges the user for authentication. It is important that the
first filter definition in the web . xm1 file should be the JPS filter.

Trinidad filter: This ensures that Trinidad is properly initialized
by establishing a RequestContext object. This filter also processes
file uploads.

ADF Binding filter: This is used to pre-process any HTTP requests
that may require access to the binding context.

While we discuss the page lifecycle, in the previous list our focus is the
ADF binding filter, which pre-processes the current request to use ADF
binding features.

When the request reaches ADFBindingFilter, it looks for the ADF binding
context in the HTTP session, and if it is not yet present, initializes it for

the first time. The ADF binding context contains data binding metadata,
such as page definition usages and data control usages for the application.
ADFBindingFilter performs the following tasks on a high level:

° Finds the name of the binding context metadata file(the . cpx
extension file), reads the entries, and generates binding context
Creates SessionContext, if it's not existing

Sets up the error handler

Sets up locale

Creates the binding container for the page

Finds or constructs an instance of each data control present in the
binding container for the requested page

[285]

Binding Business Services with User Interface

The ADFBindingFilter object invokes the beginRequest () method on each
data control participating in the request in order to prepare it for action. If the
page uses ADF Business Components, this method checks out the application
module from the pool.

3. The ADFBindingFilter returns the control to the runtime after setting up
the binding context, and the control reaches the Faces Servlet if there are no
more filters in the chain. The Faces Servlet is responsible for orchestrating the
standard processing phases of each request.

Faces Servlet by design follows an extensible architecture. It allows you to
configure a custom lifecycle implementation for the JSF pages by overriding
the default lifecycle-factory entry in the faces-config.xml file. Customized
javax.faces.lifecycle.LifecycleFactory can be coded to return custom
lifecycle implementation. The ADF framework makes use of this feature

to return an ADF-flavored LifecycleImpl class that extends the standard
JSF lifecycle to add the extra functionalities required by ADF. Here is

an example for a custom lifecycle factory configuration entry in the
faces-config.xml file:

<factory>

<lifecycle-factory>
oracle.adfinternal.view.faces.lifecycle.LifecycleFactoryImpl
</lifecycle-factory>

< /factorys>

Once the request reaches the Faces Servlet, it takes over the control and
performs a basic initialization task before starting the lifecycle for the page.
It creates the FacesContext object that contains all of the per-request state
information related to the processing of a single JavaServer Faces request
and then delegates the call to the lifecycle implementation class (oracle.
adfinternal.view.faces.lifecycle.LifecycleImpl) returned by

the overridden LifecycleFactory implementation class. The lifecycle
implementation class starts the ADF page lifecycle phases.

4. The LifecycleImpl class executes the JSF lifecycle for the requested page,
and for each JSF phase, it invokes the beforePhase (PhaseEvent) and
afterPhase (PhaseEvent) methods defined on ADFPhaseListener—a
PhaseListener implementation used by the framework. The
ADFPhaseListener governs the extended ADF lifecycle phases for the page.
Behind the scenes, the framework deploys a separate pagePhaseListener
for each task. PagePhaseListener will be executed by ADFPhaseListener
at each stage of the lifecycle. This makes the framework more extensible.

[286]

Chapter 7

The following diagram shows the details of how the JSF, ADF Faces, and ADF Model

phases integrate in the lifecycle of a page request:

JSF Lifecycle Phases ADF Lifecycle Phases

P J Restore View JSF Restore View

For New Page (View)

Init Context 4>’ Init Context

Prepare Model

’ Prepare Model

A,

{ Apply Request Values
h 4

JSF Apply Request values

*’ Prepare Render

Pt { Process Validation
. v
D ’ Update Model Values

JSF Update Model Values

bl

Validate Model Updates

\ 4

For Same Page(View)

: ’ Invoke Application JSF Invoke Application

Prepare Render

JSF Process Validations ‘
Meta Data Commit ‘

PR—

Navigate to
New Page

P
I Render Response l

We are not discussing the core JSF lifecycle in detail in this book.
To learn more on this topic, please refer to the The Lifecycle of a
JavaServer Faces Application section in The Java EE 6 Tutorial, which
T~ is available online at http://docs.oracle.com/javaee/6/
tutorial/doc/bnagqg.html.

Phases in the data bound ADF Faces page lifecycle are as follows:

* Restore view: The component tree for the view of the requested page

is either newly built or restored. The framework attempts to restore the
component tree if the view has been already processed and the component
tree is available in the FacesContext object. If this is a new request, the JSF
implementation creates an empty view (UIViewRoot) during this phase and
the components are added to the tree during the render response phase.

[287]

Binding Business Services with User Interface

* JSF restore view: This phase is extended from the restore view phase in the
JSF lifecycle. Custom phase listeners can listen on the before and after
events of this phase, to perform extra processing, if any. As mentioned
earlier, the framework deploys a set of internal ADF page I ifecycle listeners
to carry out extra tasks during the page lifecycle. During the before phase
event for the JSF restore view, UpdateBindingListener (an internal ADF
page lifecycle listener) initializes the binding container object by calling
findBindingContainerByPath () on the BindingContext object, which
finds the page definition file that matches the URL and builds the binding
container for the page. The ADF Controller uses listeners for the before
and after events of this phase to synchronize the server-side state with the
request. The page flow scope is available at the end of this phase.

* Initialize context: The binding container is initialized during this phase,
which includes registering the custom input handler for specific types and
setting up the caching mode for the error handler.

* Prepare model: During the Prepare model phase, the framework does
the following:

o

Page parameters defined in the page definition are evaluated.

[e]

If a task flow binding with parameters exists in the page definition,
parameters are evaluated and are passed into the task flow.

For any executables entry, whose refresh property is set to
prepareModel, is executed. This leads to execution of the underlying
datasource available on the data control. For example, if an
executable iterator entry is bound to a view object instance, refreshing
the property of the iterator in turn will execute the corresponding
view object instance. This explains how the page binding reads the
data from the datasource when a page loads.

If the page has been created by using a template that uses ADF
binding, the binding container for the page template is initialized
during this phase.

The task flow executable binding is executed during this phase.

If this is the initial request for the page, the lifecycle skips the process
validations, update model values, and invoke application phases and jumps
to the render response phase. The next phase continues for postback requests.

* Apply request values: After restoring the component tree, each component
in the tree extracts new values from the request parameters, converts them
to the desired form, and stores those values locally. If the conversion of the
value fails, an error message is queued on FacesContext.

[288]

Chapter 7

If the component's immediate attribute is set to true, the validation,
conversion, and events associated with the component are processed during
this phase. For immediate components, the lifecycle skips the process
validations, update model values, and invoke application phases and jumps
to the render response phase.

. Tolearn more about the immediate="true" settings for
% Ul components, visit https://cwiki.apache.org/
i confluence/display/MYFACES/How+the+immediate+

attribute+works.

JSF apply request values: This is extended from the apply request values
phase in the JSF lifecycle, allowing registered page phase listeners to listen
for the before and after phase events of this phase.

Process validations: During this phase, local values of components are
validated by processing all validators registered on the component. If there
are errors, an error message is queued on the FacesContext object and the
lifecycle jumps to the render response phase.

JSF process validations: This is extended from the process validations values
phase in the JSF lifecycle, allowing registered page phase listeners to listen
for the before and after phase events of this phase.

Update model values: During this phase, the component's validated local
values are moved to corresponding server-side properties. If the value

of an updatable component is bound to a managed bean property, the

local value is copied to the corresponding managed bean property. If the
value of an updatable component is bound to the attribute in an iterator,
the corresponding iterator is refreshed first (if the refresh is deferred and
refreshCondition is evaluated to true), and then the local value of the
component is copied to the corresponding attribute. This will call setter on
the corresponding attribute in the view row implementation class, which in
turn calls setter on underlying entity implementation (if exists).

Before updating the actual data storage (for example, the entity object), the
framework will process all the validations defined on the attribute and on
successful validation, the value is copied to the underlying data storage and
the control proceeds to the next phase. If the validation fails, the lifecycle
jumps to the render response phase. Exceptions are caught by the binding
container and cached for display during the render response phase.

JSF update model values: This phase is extended from the update model
values phase in the JSF lifecycle, allowing registered page phase listeners to
listen for the before and after phase events of this phase.

[289]

Binding Business Services with User Interface

Validate model updates: The validation defined on the underlying entity
object (validation added through the entity validators) is processed during
this phase. Exceptions are caught by the binding container and cached for
displaying during the render response phase.

Invoke application: During this phase, application events are invoked. For
example, if you have specified any action event for a command button, it is
processed in this phase. If navigation is specified for the action, navigation
to a different view happens at the end of this phase.

JSF invoke application: This phase is extended from the invoke application
phase in the JSF lifecycle, allowing registered page phase listeners to listen
for the before and after phase events of this phase.

Metadata commit: This is executed after the invoke application phase.
During this phase, changes to runtime metadata are committed to the data
store, which is configured using MDS.

If the navigation occurs in the invoke application lifecycle, the following
phases are executed for a new view:

[e]

Initialize context: The page definition file for the new view is
initialized in this phase

Prepare model: Model for the new view is prepared and initialized
in this phase

Prepare render: During this phase, the binding container is refreshed to
reflect the changes performed in the previous phases. Iterators whose
refresh property is set to renderModel, are refreshed during this phase.

Render response: The page is built during this phase. If this is the initial
request for the page, the component tree for the page is built during this
phase and appended to UIviewRoot. Once the tree is built, each component
is asked to write its value into the response object and the state of the
response is saved either on the client or server, based on the configuration.

ADF Faces has data streaming support for certain components such as
tables, trees, tree tables, and data visualization components, where the

data fetch for these components happens in another request, after rendering
the page. The framework executes only the render response phase for data
streaming requests.

JSF render response: This phase provides the before and atter phase
events for the render response phase.

At the end of the render response phase, the user sees the resulting page in
the browser.

[290]

Chapter 7

To learn more about the JSF lifecycle and extended ADF Faces lifecycle,
refer to the topic Using the JSF Lifecycle with ADF Faces in Oracle Fusion
. Middleware Web User Interface Developer's Guide for Oracle Application
% Development Framework. To access the documentation go to http://

s www.oracle.com/technetwork/developer-tools/jdev/
documentation/index.html. Choose Oracle JDeveloper and navigate
to ADF Documentation Library | Web User Interface Developer's
Guide. Use the search option to find specific topics.

Invoking an application module from a
Java servlet

We have discussed the basic configurations and metadata files required for running
an ADF web application. This is very easy if you build an application by choosing

a Fusion web application template. JDeveloper will take care of managing all the
metadata files-dependent libraries.

What if you want to call services exposed by an application module from a non-ADF
web application?

There are two approaches:

* Using Configuration: :createRootApplicationModule (String
qualifiedAMDefName, String configName) to create an appropriate
application module instance, and then calling desired methods on it

* Using ADF Model APIs for accessing business methods exposed through
data control

These approaches are discussed in the following sections.

Using Configuration::createRootApplicationM
odule() in HttpServlet

You can call createRootApplicationModule () on the Configuration class to
instantiate an application module in a Servlet class. While doing so, make sure
you do the following configuration as well.

[291]

Binding Business Services with User Interface

Configure oracle.adf.share.http.ServletADFFilter in the web.xml file to
ensure the proper initialization of oracle.adf.share.ADFContext while accessing
the application module from a non-ADF web application, using the servlet. This
filter reads the configuration from WEB-INF/adf-config.xml and initializes the
ADFContext object. However, applications using ADFBindingFilter can skip this
filter, as this is already taken care of by the binding filter.

The following code snippet illustrates the APIs to be used in Httpservlet, to create
an application module and release it towards the end of the request:

/**
*Process the HTTP doGet request.
*/
public void doGet (HttpServletRequest request, HttpServletResponse
response) throws ServletException, IOException {
HRServiceAppModuleImpl am=null;
try{
String amDef =
"com.packtpub.model.service.HRServiceAppModule" ;
String config = "HRServiceAppModuleLocal";
//Creates AM instance
am = (HRServiceAppModuleImpl) Configuration.
createRootApplicationModule (amDef, config) ;
//Call desired methods defined on am
am.runSalaryRevisionReoutine () ;
//Business logic goes here.......
}catch (Excpetion ex) {
//Handle Error
}finally({
//Release am instance at the end of request
if (am !=n ull){
Configuration.releaseRootApplicationModule
(am, false);

[292]

Chapter 7

Using ADF binding APIs in an HttpServlet

You can use ADF binding APIs for accessing underlying business service
implementation even outside the context of a Fusion web application. As we have
discussed earlier, the ADF binding layer makes use of metadata XML files for holding
binding information. To use a binding API from a non-ADF web application, you may
need to manually create the adfm.xml, DataBindigs.cpx, and pageDef . xml files in
the respective folders and then use ADF binding APIs from a servlet (or any other Java
class) for accessing a data collection exposed through data control. Alternatively, to
avoid the manual error, you can create a dummy project with a page and necessary
method bindings, and copy the generated adfmsrc folder containing the metadata
files to your non-ADF web project. The following screenshot displays a non-ADF

web project with a servlet class and hand-coded ADF binding metadata files:

Applicaﬁon Navigator * [;]
ADFDevGLideCh7 ~|[E -
=l Projects Bl & Vo=~

(3] HRDataMadel
E| ServietViewController
=] Application Sources
l_l‘_| ----- il com.packtpub.adfguide
Bl ch7
@----.11’[] wiew

2 pageDefs
L:_i" departmentPagelef, xmi
: ..[[7] DataBindings. cox
] DemoServlet.java
=3 META-INF
adfm, xml
=1 Web Content

This example uses the following configurations in web .xml. ADFBindingFilter is
configured to intercept all URL requests with the /adf/* URL pattern. This filter
initializes the binding context before transferring control to Demoservlet used in
this example:

<web-app ...>
<filters
<filter-name>adfBindings</filter-name>

<filter-class>oracle.adf .model.servlet.
ADFBindingFilter</filter-class>

</filter>

[293]

Binding Business Services with User Interface

<filter-mappings
<filter-name>adfBindings</filter-name>
<url-pattern>/adf/*</url-pattern>

</filter-mapping>

<servlets>
<servlet-namesDemoServlet</servlet-names>
<servlet-class>com.packtpub.adfguide.ch?7.
DemoServlet</servlet-class>

</servlet>

<servlet-mapping>
<servlet-names>DemoServlet</servlet-names>
<url-pattern>/adf/DemoServlet</url-pattern>

</servlet-mapping>

</web-app>

The following code snippet illustrates the usage of ADF binding APIs for accessing
the row set through the table binding definition present in a page definition. As

there are no automated ADF page lifecycles involved for a servlet, you will have to
programmatically build the binding container by passing the page definition usage ID
mapped in the DataBindings. cpx file and refresh it before accessing the bindings.

//In custom HttpServletclass
/**
*Process the HTTP doGet request.

*/

public void doGet (HttpServletRequest request, HttpServletResponse

response) throws ServletException, IOException {
BindingContext bindingContext = null;

try {
bindingContext = BindingContext.getCurrent () ;
String CONTENT TYPE = "text/html; charset=windows-1252";

response.setContentType (CONTENT TYPE) ;
PrintWriter out = response.getWriter () ;
out.println("<html>") ;
out.println("<head><title>Demo</title></head>") ;
out.println ("<body>") ;
//Get DataControlFrame
DataControlFrameImpl dcframe = (DataControlFrameImpl)
BindingContext.getCurrent () .dataControlFrame () ;
//Get desired data control
DCDhataControl dcd = dcframe.findDataControl
("HRServiceAppModuleDataControl",
"HRServiceAppModuleDataControl", true);
//Get the binding container

[294]

Chapter 7

DCBindingContainer dcBindingContainer =bindingContext.
findBindingContainer (
"com packtpub adfguide ch7 view servlet departmentPageDef") ;
JUCtrlRangeBinding depts = (JUCtrlRangeBinding)
dcBindingContainer.findCtrlBinding ("Departments") ;
//Execute (refresh) the underlying view object
dcBindingContainer.refreshControl () ;
//Get the row set

List<JUCtrlValueBindingRef> deptsList =
depts.getRangeSet () ;
//Iterate over row set

Iterator deptsIter = deptsList.iterator();

while (deptsIter.hasNext()) {
JUCtrlvValueBindingRef valueBinding =
(JuCtrlvalueBindingRef)deptsIter.next () ;
Row attrs = valueBinding.getRow () ;
out.println(attrs.getAttribute ("DepartmentName") +
"<br/s>");

}

out.println("</body></html>") ;

out.close() ;

} finally {

//Clean up code goes here...
//You can call BindingContext::release () ;on
//Session timeout or user logout or from here itself

A working example illustrating the usage of binding APIs
from a non-ADF web application can be found in the
& example code of this book. To access the example code, open
the ADFDevGuideCh7 work space in JDeveloper and look
for the ServletViewController project.

Adding custom phase listeners

ADF framework allows you to plug in your custom phase listener implementations
for each phase in a page lifecycle. This feature is useful if you want to perform
some resource cleanup activities or to enable some security check during the page
lifecycle. The custom phase listeners can be registered either for an application

or for individual pages.

[295]

Binding Business Services with User Interface

To access the documentation, go to http://www.oracle.com/
A

To register an application level phase listener, create a class that implements
the oracle.adf.controller.v2.lifecycle.PagePhaseListener interface.
Then register the custom phase listener in adf-settings.xml, located under
the META- INF folder. Create a new file if it is not there by default.

If you want to register the custom pagePhaseListener for a page, specify
the custom PagePhaseListener implementation as ControllerClass in
the page definition file.

If you want more ADF-flavored phase listeners for a page that provides
more granular control over ADF phase events, build a class extending
oracle.adf.controller.v2.lifecycle.PageController and register
the same in the page definition file as ControllerClass.

To learn more about Fusion page lifecycle customization, refer to the topic
entitled Customizing the ADF Page Lifecycle in Oracle Fusion Middleware
Fusion Developer's Guide for Oracle Application Development Framework.

technetwork/developer-tools/jdev/documentation/index.
html. Choose Oracle JDeveloper and navigate to ADF Documentation
Library | Fusion Developer's Guide. Use the search option to find
specific topics.

Summary

In this chapter, you learned about the ADF data binding framework, and its

layered architecture and usage. You also experienced the visual and declarative
programming model offered by JDeveloper for building UI for the business services.
Towards the end, we discussed the page lifecycle for a Fusion web page and the
support for lifecycle customization as well.

The story on ADF data binding features and Ul is not over yet. In the next chapter,
we will see how to build a data bound web UI, and many more exciting features
in this area.

[296]

Building Data Bound Web
User Interfaces

In the previous chapter, you learned the fundamentals of building a Ul for business
services. This chapter continues our discussion on building a Ul, this time covering
data bound UI development in detail. You will experience the power of model
driven UI development support offered by the Oracle ADF framework along with
JDeveloper IDE. We will discuss the following topics in this chapter:

* The art of laying out pages.

* Adding actions to your page

* Building data bound table Uls

* Building data bound master-detail Uls

* Building data bound tree table Uls

* Accessing web tier values from business components
* Building data bound query search forms

* Building data bound multi select lists

* Overriding Ul hints in a view object

Introduction

We have discussed visual and declarative development features of ADF for business
components in previous chapters. In this chapter we will cover visual and declarative
development features of the view layer. The view layer of a Fusion web application
is built using ADF Faces which is very rich in features, with a large set of over 150
AJAX enabled UI components. Oracle ADF framework along with JDeveloper IDE
provides a very easy way to bind components from the business services to the Ul
layer using a declarative binding layer approach. We will cover these topics in detail
in the coming sections.

Building Data Bound Web User Interfaces

The art of laying out pages

The first task in building a web page is to pick up the right layout for placing the
UI components. The ADF Faces components stack is rich with a number of layout
components which can be used for arranging other UI components on the page.

The following table lists commonly used ADF Faces layout components:

Component Description Stretched by Stretch
Parent Children
af :panelFormLayout Arranges items in No No
columns or grids.
af :panelBorderLayout Places items in fixed, No No
peripheral areas around
a central area.
af: Enables automatic Yes (when Yes
panelStretchLayout component stretching dimensionsFrom
in your pages. This = parent)
contains top, bottom,
start, center, and end
facets to hold child
components.
af:panelsSplitter Enables automatic Yes (when Yes
component stretching dimensionsFrom
in your pages. This = parent)
divides a region into
two parts (the first facet
and the second facet)
where you can place
contents.
af :panelDashBoard Arranges child Yes (wWhen Yes
components column- dimensionsFrom
WISE. = parent)
af:panelAccordion Creates collapsible Yes (when No
panes. dimensionsFrom
= parent)
af :panelTabbed Creates stacked tabs. Yes (when No
dimensionsFrom
= parent)
af :decorativeBox Provides a decorative Yes (when Yes
box for the child dimensionsFrom
components. = parent)

[298]

Chapter 8

Component Description Stretched by Stretch
Parent Children
af :panelBox Provides a titled box Yes Yes (when
which can contain child type =
components. stretch)
af:showDetail Hides and displays No No
groups of content
through the toggle icon.
af :panelGroupLayout Enables automatic Yes (when layout
scroll bars in your =scroll or
pages, and arranges vertical)
items horizontally or
vertically.
af :panelCollection Adds menus, toolbars, Yes Yes
and status bars to
data aggregation
components such as
tables, trees, and tree
tables.
af:panelHeader Creates titled sections Yes (when type = Yes (when
and subsections. stretch) type =
stretch)
af:panellist Creates styled listsand ~ No No
content boxes.
af:panelGridLayout Arranges components Yes (when Yes (When
in Folumns or grids dimensionsFrom .af : g?:LdCe; 1
using af :gfr:LdRow = parent) 1s configure
and af:gridcell. for it)
af :spacer Adds a blank space No Not a container
between components.
af:separator Adds divider line No Not a container

between components.

Al

Q

To learn more about page layout components, refer to the topic
Organizing Content on Web Pages in Oracle Fusion Middleware Web User
Interface Developer's Guide for Oracle Application Development Framework.
To access the documentation go to http://www.oracle.com/
technetwork/developer-tools/jdev/documentation/index.
html and choose Oracle JDeveloper and ADF Documentation Library |
Web User Interface Developer's Guide.

You can also refer the layout basics section in the ADF Faces demo
application available online at http: //jdevadf.oracle.com/adf-
richclient-demo/faces/feature/layoutBasics. jspx.

[299]

http://jdevadf.oracle.com/adf-richclient-demo/faces/feature/layoutBasics.jspx
http://jdevadf.oracle.com/adf-richclient-demo/faces/feature/layoutBasics.jspx

Building Data Bound Web User Interfaces

Organizing page contents — a case study

This section discusses the basic steps for designing a typical ADF Faces page. Let
us take a screen mock-up, and see how the ADF Faces components can be used to
realize such screens in real life. This exercise may give you a feel of sequences of
tasks involved in designing real life web pages.

Take a closer look at the following screenshot. How do you proceed if you want to
design such a page using ADF Faces?

Employee Table

—_— ‘i, ______________________________ .
Employeeld FirstMame LastMName FullName Email ManagerId Departmentld
100 Steven King Steven King SKING a0 -
101 MNeena Kochhar Neena Kochhar NEOCHHAR 100 a0 E
102 Lex De Haan Lex De Haan LDEHAAM 100 a0
103 Alexander Hunold Alexander Hunold AHUNOLD 102 60
104 Bruce Ernst Bruce Ernst BERNST 103 60
105 David Austin David Austin DAUSTIN 103 60
106 valli Pataballa valli Pataballa VPATABAL 103 60
107 Diana Lorentz Diana Lorentz DLORENTZ 103 60
108 Mancy Greenberg Nancy Greenberg NGREEMBE 101 100
109 Daniel Faviet Daniel Faviet DFAVIET 108 100 N
Employee Petails | T ! |

Employee Detail

The first step is to identify the top level layout components to organize top level
containers. This task is much simpler if you can spend some time analyzing the
screen mock-up and understanding the behaviour of each part. A very common
approach followed by many developers in this regard is to divide the screen into
logical parts and then decide the layout component for each part. For example, if
you take a closer look at the previous screenshot, you may find two logical parts in
the screen. The first part of the page contains the employee table and the second part
contains the employee details parameter form. A second look may reveal that the
detail parameter form on the bottom of the page is fixed in size whereas the table
on the top is stretched to fit the available window size. You can draw grids over the
components to logically partition the screen as shown in the previous screenshot.
This makes your life even simpler while choosing layout components.

[300]

Chapter 8

Once you are done with the logical partitioning of the screen, for the next step, you
may need to choose the top level layout component for the page. You can start with
the outermost (root level in node hierarchy) layout component and work inwards
(leaf levels in node hierarchy) covering all parts in the target page. A possible root
layout component that meets the above requirement is af : panelStretchLayout.
Note that the term "root layout components" does not refer to the root element in
your JSF page, rather it refers the top level container component which is added as a
child to the af : form tag. For panelStretchLayout, when you set the height of the
top and bottom facets, any contained components are stretched up to fit the specified
height, and the remaining portion is allocated to fit the components in the

centre facet.

The facet for a JSF component represents a named section within the
container components. It allows you to add more characteristics to the
\l component. For example, in the case of panelStretchLayout, you can
~ add components that may need to appear in the centre of the container to
Q the center facet as follows:

<af:panelStretchLayout id="psl"><f:facet
name="center"><!-Child components here--> <f:facet></
af :panelStretchLayout>

The initial layout structure may look as follows:

<af:panelStretchLayout id="psll" bottomHeight="150px">
<f:facet name="bottom"/>
<f:facet name="center"/>
<f:facet name="start"/>
<f:facet name="end"/>
<f:facet name="top"/>
</af:panelStretchLayout>

The previous settings for af : panelStretchLayout allocates 150 px height (fixed)
to the bottom facet. Now the picture is clearer. You can add the employee details to
the bottom facet of panelstretchLayout which takes a fixed height (150 px). The
stretchable table can be added to the centre facet. Optionally, you can surround

the table with an af :panelcollection component to provide toolbars and menus
support for the table components.

[301]

Building Data Bound Web User Interfaces

The task remaining is identifying an appropriate layout component for the parameter
form. The challenge here is the uneven distribution of the Ul elements across

rows. The af : panelFormLayout is the quickest solution to lay out components

in a grid. Unfortunately this component lacks support for uneven distribution of
child elements across rows. The next possibility is to use af : panelGridLayout.

This component can be considered as a tabular container which supports

uneven distribution of Ul controls across rows or columns. It uses af : gridRow

and af:gridcCell to arrange components. The af : gridrow defines rows for a

af :panelGridLayout and it is used to arrange af :gridcell children for a parent
panelGridLayout component. The af :gridcell allows containing component to
span across multiple rows or columns. Apparently the panelGridLayout component
meets the Ul requirements of this example. Refer to the tag documentation to learn
more about af : panelGridLayout which is available online at http://jdevadf.
oracle.com/adf-richclient-demo/docs/tagdoc/af panelGridLayout.html.

The final page structure may look like the following screenshot:

= &@ jspiroot
@ jspudirective. page
E} fiview
=& af:document - Sample
--lg afimessages
= [eg] af:form
=T af:panelstretchLayout
=-FH fifacet - center
E}E afipanelCollection - pcl

e Eﬂ fifacet - statusbar

- afitable - t1
----- Hﬂ fifacet - start
[—}--Eﬂ fifacet - bottom
= af:panelHeader - Employee Details
: | af:panelGridLayout - pgll
af:gridRow - auto

afigridRow - auto
afgridRow - auto
----- FH fifacet - end
----- FH f:facet - top

You can find a sample JSF page that uses af : panelGridLayout in the
M example code that we mentioned at the beginning of this book, in the
Q Preface section. To access the example code, open the ADFDevGuideChs8
workspace in JDeveloper and look for the panelGridLayoutSample.
jsf page in the ViewController project.

[302]

http://jdevadf.oracle.com/adf-richclient-demo/docs/tagdoc/af_panelGridLayout.html
http://jdevadf.oracle.com/adf-richclient-demo/docs/tagdoc/af_panelGridLayout.html

Chapter 8

Adding actions to your page

The JSF framework offers an event based programming model that you may see
in traditional thick client desktop applications built using Java Swing or similar
technology. JSF allows you to execute business logic in response to user actions
on the UI component at runtime. These events are broadly termed as application
events. They are classified further into two categories: action events and value
change events. The action events are triggered by actionable components, such as
command button, and value change events are triggered by editable components,
such as input field. As ADF Faces is built on top of the JSF framework, ADF Faces
inherits the same event model.

You will use ADF Faces command components such as af : commandButton,

af :commandLink, and af : commandImageLink to invoke any business service
methods or to perform page navigation. You can add custom event handlers for

the action components using action listener bindings offered by the ADF Faces
(JSF) framework. The action listener binding for an action component can be either
wired to a managed bean method that takes javax.faces.event.ActionEvent as
a parameter, or to an operation (custom method or built-in actions method) exposed
through data control.

Choosing between the managed bean
method and the data control method as event

handlers

The managed bean is the code-behind class for an ADF Faces (JSF) page. All your
client's specific logic, such as reading a selected row in Ul table components, or
checking the status of UI components, and so on, should be coded in a managed
bean. If you want to programmatically control the behaviour of the Ul components
or if you want to programmatically retrieve the values from Ul components before
calling business methods with a click of a button, then such event handlers should be
coded in your managed bean.

A data control typically acts as a wrapper over your business service
implementation. Ideally business service implementation should be independent

of the view layer. If you need to invoke a business method exposed through data
control with a click of a button and all the input parameters for this method are
readily available or can be derived from the underlying model, then you can directly
wire a command button to the data control method.

[303]

Building Data Bound Web User Interfaces

Using managed bean methods as event handlers

To wire an action component with a method in a managed bean, select the
desired component in the Ul, go to the property inspector window and scroll to
the ActionListener property. Select the property menu option (down arrow) for
ActionListener and select Edit.... This is shown in the following screenshot:

@Butb:\n - Save - Property Inspector X [;]
m A B aFn @
Button Action
Action: | | ~
ActionListener: K%
) ActionListener
UseWindow: | <default> (false)
WindowEmbedStyle: |<default> (window) Method Expression Builder...
WindowModalityType: | =zdefault> (modeles
=] Pr rty Hel
WindowHeight: MrEWE
@ method reference to an action
Windowwidth: listener
-| Appearance
o Text: Save
Accesskey: o

In the Edit Property window, specify the bean class and custom event handler
method. While specifying the bean class, if you chose to create a new bean for the
defining event handler, IDE does the following:

* Creates Java bean class with a method

* Defines an entry for the new bean in adfc-config.xml or in the task flow
XML file as appropriate

* Generates an EL expression for the binding component actionListener
attribute in the page with the method in the managed bean

Using data control methods as event handlers

To wire an action component with a method exposed in the Data Controls panel,
drag the method from the Data Controls panel and drop it onto the page as an
appropriate Ul component such as ADF Button, ADF Link, and so on.

This is displayed in the following screenshot:

[304]

Chapter 8

ﬁppil:atinnllav_ x IlaDatahase Mavigator * E] @emdcyee.jsf x

] ADFDevGuideChs -
+ Projects Bl @@ &
+| Application Resources

| Data Controls &

B% HRServiceAppModuleDataControl
E Departments

& - | show - | 1600 x 1200 -l

|None - I Default

E Employees /
I IreviseEmployeeSalary(Integer)
. Operations

+| Recently Opened Files

>

Create
ADF Parameter Form...

Cancel

@ ADF Link
O ADF Toolbar Button
@ ADFImageLink

When you drop a method, IDE will prompt you to bind the method either by
selecting an existing button or by creating a new button component through the
Method | ADF Button option in the context menu. Select the appropriate option and
finish the menu. If the method that you selected takes parameters, then you will get
an Edit Action Binding dialog window as shown in the following screenshot:

= Edit Action Binding

Select a data collection and the action you want your control to initiate. The control initiates the action on the
data objects of the selected collection.

==l

-z JHR.ServiceAppModuleDataControl

Parameters :

MName Type

Help

Value
#{bindings.Employeeld.inputValue}

final
optional
mandatory

oK Cancel

[305]

Building Data Bound Web User Interfaces

The Edit Action Binding dialog allows you to specify values for parameters
appearing in the method. The Value can be set as an EL expression or static values.
If you are setting values through EL, you can optionally avail the EL Expression
Builder wizard to generate the desired EL, which is available by clicking on a
Value cell. When you set parameter values, the editor will also allow you to specify
parameter evaluation options. The parameter option decides when the binding
container should evaluate the value set for the parameter at runtime. The possible
parameter options are as follows:

final: This means that the value set for parameters in the binding definition
is final, and the framework will not allow clients to override this value.
The parameter value cannot be passed by the caller when the method is
invoked programmatically, for instance while using oracle.binding.
OperationBinding API for executing an operation.

optional: This allows the caller to optionally override the parameter value set
in the binding definition file. The parameter value defined in your binding
definition is of least precedence here - just opposite to £inal. This is the
default option for a parameter.

mandatory: This option forces the caller to set the parameter value, always.
The value specified in the binding definition as an EL expression or a string
literal will never be considered if the parameter option specified

is mandatory.

When you finish dropping a method on the page, IDE creates the following items:

The IDE creates the <af : commandButton> component in the JSF page with
the appropriate EL binding for the actionListener attribute. For instance,
the following JSF code snippet is generated when the reviseEmployeeSalary
method is dropped on to the page as an ADF Button:

<af:commandButton actionListener="#{bindings.reviseEmployeeSalary.
execute}"

text="reviseEmployeeSalary"
id="cb5"/>

IDE also generates a <methodAction> binding in the page definition file
for accessing the method that is dropped from the Data Controls panel.
This entry is used by the binding framework to invoke the actual method
implementation when a user clicks the button at runtime.

The following is the entry generated in a page definition file when the
method reviseEmployeeSalary is dropped on to the page:

<pageDefinition ... >

<bindings>

[306]

Chapter 8

<methodAction id="reviseEmployeeSalary"
RequiresUpdateModel="true" Action="invokeMethod"
MethodName="reviseEmployeeSalary"
IsViewObjectMethod="false"
DataControl="HRServiceAppModuleDataControl"
InstanceName=
"data.HRServiceAppModuleDataControl.dataProvider"
<NamedData NDName="employeeId"
NDValue="#{bindings.EmployeeId.inputValue}"
NDType="java.lang.Integer"/>
</methodActions>
</bindings>
</pageDefinition>

Building data bound table Uls

The table Ul is one of the very popular UI components for presenting a collection of
rows to end users. In general, displaying data collection on a table UI involves the
following tasks:

* Invoking business services for reading data collection

* Populating the Ul with retrieved collection

The data bound Ul table offered by the Oracle ADF framework does the above tasks
out of the box. The steps for building a data bound table are as follows:

1. Drag the view object instance from the Data Controls panel and drop it on
the visual designer for the page. Doing so displays a context menu with a list
of possible UI components to display the data collection.

Select Table | ADF Table in the context menu.

In the Edit Table Columns dialog window, specify the Row Selection,
Sorting, and Filtering properties. The editor also allows you to add, remove,
group, or rearrange columns, and alter the default display label, value
binding, and display component for columns. Click on OK to save the work.

[307]

Building Data Bound Web User Interfaces

What happens when you drop a data

collection as a table on a page?

When you build a table component by dragging and dropping a data collection on a
page, the IDE generates the following:

* Code for <af:table> component in the JSF page with all generic properties
defaulted with values from model definition through binding EL expressions

* Binding definition for the table in the page definition file. It has two parts:

1. An executable iterator binding that is responsible for fetching rows
displayed in the data bound UI components. The commonly used
properties of the iterator bindings are discussed in the next section.

2. A tree binding definition that describes the attributes of a row present
in the collection. Note that the ADF binding framework uses the tree
binding structure to describe data for a table UI component. This is
the reason why you see tree binding here.

The following code snippet from the page definition XML file shows the tree binding
definition for the Departments collection. This is bound to af : table on the Ul The
<nodeDefinition> that you see in this XML file describes the attributes present in
arow.

//In page definition XM1 file

<pageDefinition ... >
<executables>
<variablelterator id="variables"/>
<iterator Binds="Departments" RangeSize="8" DataControl="HRServiceApp
ModuleDataControl" id="DepartmentsIterator"
ChangeEventPolicy="ppr"/>
</executables>
<bindings>
<tree IterBinding="DepartmentsIterator" id="Departments"s>
<nodeDefinition DefName="com.packtpub.adfguide.ch8.model.view.
DepartmentVO" Name="DepartmentsO0">
<AttrNames>
<Item Value="DepartmentId"/>
<Item Value="DepartmentName"/>
<Item Value="ManagerId"/>
</AttrNames>
</nodeDefinition>
</trees>
</bindings>
</pageDefinition>

[308]

Chapter 8

Commonly used attributes of iterator bindings

The iterator binding in a page definition file is responsible for populating the row
set by executing a view object during a page lifecycle. You may not really need to
modify the default iterator binding properties in the page definition file for most of
the use cases. However, there are some properties which you may want to know,
especially when you need to fine-tune default iterator behaviour.

To override the properties of an iterator executable, select the desired executable in
the overview editor of the paged definition file and override the properties using the
property inspector window as appropriate. The following are the commonly used
properties of the iterator binding definition:

RangesSize: This specifies the number of rows in a range (page size) you can
use to access a subset of the data objects in the collection. The default value is
25. If you set -1, all rows are read at once.

For an iterator bound to an af : table component, it is recommended to keep
the RangeSize = autoHeightRows property of af : table to+ 1 to reduce the
number of round trips between the client and the middle tier to fetch rows
that fill the view port for the table. The property autoHeightRows decides
the maximum number of rows for a table component in the viewport, after
which a scroll bar is displayed.

ChangeEventPolicy: This specifies the event strategy for the component.
The possible values are as follows:

i. push: This is used in active data streaming (ADS) mode. This
setting causes the iterator to refresh when active data is pushed
to the client. Active data is a continuous stream of changes
that is delivered to a client by using a push based mechanism.
ADF provides the framework for application developers to
configure and use active components to show active data in
their applications. To learn more about ADS, refer to the topic
Using the Active Data Service in Oracle Fusion Middleware Fusion
Developer's Guide for Oracle Application Development Framework.
To access the documentation go to http://www.oracle.com/
technetwork/developer-tools/jdev/documentation/index.
html and choose Oracle JDeveloper and ADF Documentation
Library | Fusion Developer's Guide. Use the Search option to
find specific topics.

[309]

Building Data Bound Web User Interfaces

ii.

iii.

ppr: This is the default ChangeEventPolicy value which causes
automatic Partial Page Refresh (PPR) for all Ul components
when the associated iterator binding refreshes during a page
lifecycle. Partial Page Refresh allows certain components on a
page to be refreshed without the need to refresh the entire page.
To learn more about PPR in Uls, refer to the topic Rerendering
Partial Page Content in Oracle Fusion Middleware Web User Interface
Developer's Guide for Oracle Application Development Framework.

none: This flag disables push and ppr features. During a page
lifecycle, the iterator refreshes the data collection based on
refresh and refreshConditions Settings.

* RowCountThreshold: This property is used for avoiding expensive runaway
count queries fired by UI components such as table or tree table. The total
row count is used by these components to manage the UI characteristics.
For example, the total row count is used by the table or tree table to size the
vertical scroll bar displayed on the Ul The framework decides on executing
the count query based on the following conditions:

o

[e]

o

if RowCountThreshold = 0, executes count query
if RowCountThreshold < 0, skips count query execution

if RowCountThreshold > 0, executes count query with
RowCountThreshold value as upper limit.

If the underlying database table has millions of rows, then you can
set the RowCountThreshold to a positive value in order to avoid

a full database table scan. For example, consider the following
iterator binding definition present in a page definition file with
RowCountThreshold = 1000:

<iterator Binds="Departments" RangeSize="25"

RowCountThreshold="1000" DataControl="HRServiceAppModuleData
Control" id="DepartmentsIterator"/>

If the previous iterator is bound to the table UI with a scroll bar, then
the count query fired by the framework at runtime will have the
RowCountThreshold condition appended, as shown here:

SELECT count (1) FROM (SELECT DepartmentEO.DEPARTMENT_ID,
DepartmentEO.DEPARTMENT NAME, DepartmentEO.MANAGER

ID, DepartmentEO.LOCATION ID FROM DEPARTMENTS
DepartmentEO WHERE ROWNUM <= 1000)

[310]

Chapter 8

You may notice that the previous query puts an upper bound (row
count threshold) for the SELECT clause which limits the number of
rows scanned during execution. This is useful if the table contains
millions of rows.

What happens at runtime in a data bound
table?

When a data bound table UI renders at runtime, it evaluates the EL expression for
value attributes and populates data collection model object with the row set. To
render each row, the framework engages corresponding iterator binding objects
to traverse over the row set one by one.

Adding edit functionalities for a table

In this section, we will discuss about adding edit functionalities such as create,
update, and delete for a data bound table.

Creating a new row

To add the create functionality, perform the following steps:

1. Go to the Data Controls panel, select the data collection (view object
instance) used for building the table, and expand the Operations node.

2. Drag the Createlnsert operation and drop it on the page as an action
component by choosing the appropriate component displayed in the
context menu.

When you drop the built-in operation as a component on a page, IDE generates the
corresponding action binding in the page definition file and sets the newly added
component as partialTriggers for all the affected components in the JSF page. The
property partialTriggers takes the IDs of the components that should trigger a
partial update on this component during the post back of the page.

The previous settings are enough for most of the use case to work. However, if

the af : table has its editingMode set to c1ickToEdit, then new rows created at
runtime, by clicking on CreateInsert, do not become the active row by default. This
will cause the row level validation to defer till you commit the transaction. Note that
in the clickToEdit mode, the framework makes the active row of the table editable
and is brought into view. In such cases you must programmatically make a row
active by calling the setActiveRowKey () method on the table component.

[311]

Building Data Bound Web User Interfaces

The editingMode property for an af : table component indicates the
mode used for editing the table when it contains editable components.
. The possible values for this property are clickToEdit and editAll.In
% the editAll mode, all the editable components are displayed at a time in
&~ the table view area. In the c1ickToEdit mode, a single row is editable
at a time. Refer to the tag documentation to learn more, which is available
online at http://jdevadf.oracle.com/adf-richclient-demo/
docs/tagdoc/af _table.html.

The following example illustrates the usage of setActiveRowKey () for a custom row
creation method.

This example EL binds the createInsertaAction () method in a managed bean with
command button's actionListener property:

<af:commandButton actionListener="#{MyBean.createlnsertAction}"
text="CreateRow" id="cbl" />

The createInsertAction () method definition in the managed bean is as follows:

//In managed bean class
public void createInsertAction (ActionEvent actevnt) {
//Call row create routine defined in AM using binding API
BindingContext bc = BindingContext.getCurrent () ;
DCBindingContainer dcb =
(DCBindingContainer) bc.getCurrentBindingsEntry () ;
OperationBinding op = dcb.getOperationBinding

("createDeptRow") ;
Row row = (Row)op.execute() ;
if (op.getErrors().size() == 0) {

//On success, keep the new row as active
ArrayList lst = new ArrayList (1) ;
lst.add(row.getKey()) ;
getDataTable () .setActiveRowKey (1lst) ;

}
}

The createDeptRow operation used in the previous example refers to the following
custom method defined in the application module which is exposed through the
data control:

//In application module implementation class

public Row createDeptRow () {
//Gets Departmentsview object

ViewObjectImpl vo = getDepartmentsViewl () ;
//Create and insert row

Row row = vo.createRow() ;

[312]

http://jdevadf.oracle.com/adf-richclient-demo/docs/tagdoc/af_table.html
http://jdevadf.oracle.com/adf-richclient-demo/docs/tagdoc/af_table.html
http://jdevadf.oracle.com/adf-richclient-demo/docs/tagdoc/af_table.html

Chapter 8

vo.insertRow (row) ;
return row;

Deleting a row

To add a delete functionality, perform the following steps:

1. Go to the Data Controls panel and select the data collection used for building
the table, then expand the Operations node.

2. Drag the Delete operation and drop it on the page as an action component by
choosing the appropriate component displayed in the context menu.

When you click on the Delete button at runtime, the framework will remove the
current row from the view object which may in turn call remove on underlying
entity objects.

Committing changes

To add the save functionality, drag the Commit operation from Data Controls and
drop it on a page as an action component by choosing the appropriate component
displayed in the context menu.

When you click on the Commit button at runtime, the framework will call commit

on the underlying DBTransaction object which will result in posting changes to the
database followed by a commit call on the database connection object level. The APIs
used to perform commit from client side code is discussed in Chapter 7, Binding Business
Services with User Interface, in the section entitled Accessing the data control frame.

Programmatically accessing a selected row from
a table

While working with a rich Ul, you may need to access selected rows of the Ul table
from a managed bean in response to some user actions. For example, in the employee
UI table you may want to check whether the user has selected a "promote employee"
checkbox when he or she clicks on the Process Selected Row button. The following
code snippet illustrates the usage of APIs for reading selected rows from a table:

/**
* This method return selected row for the table
* @param deptTable - Table bound to the UI
* @return
*/
public Row getSelectedRow (RichTable deptTable) {

[313]

Building Data Bound Web User Interfaces

Row currentRow = null;
RowKeySet selectedRowKeys = deptTable.getSelectedRowKeys () ;

//Store original rowKey
Object oldRowKey = deptTable.getRowKey () ;

try {

if (selectedRowKeys != null) {
Iterator iter = selectedRowKeys.iterator();
if (iter != null && iter.hasNext())
Object rowKey = iter.next () ;
//stamp row
deptTable.setRowKey (rowKey) ;
JUCtrlHierNodeBinding rowData =
(JUCtrlHierNodeBinding)deptTable.
getRowData () ;
//rowData holds current row object,
//your code to deal with row goes here
currentRow = rowData.getRow () ;

} finally {

//Restore the original rowKey
deptTable.setRowKey (oldRowKey) ;

}

return currentRow;

The API documentation for ADF binding and ADF Faces can be found
. online. To access the documentation go to http: //www.oracle.com/
% technetwork/developer-tools/jdev/documentation/index.
L= html and choose Oracle JDeveloper and ADF Documentation Library
| ADF Model Java API Reference. In the same section, follow the ADF
Faces Java API reference link for accessing ADF Faces APIs.

[314]

Chapter 8

Declaratively reading the attribute value from the
currently selected row

It is very common that when a row is selected in a table, you may want to update
other fields in the Ul or call some specific operations with attributes from the selected
row. There is an easy way to retrieve the desired attributes for the current row by
defining the attribute binding for those attributes.

To define attribute binding, perform the following steps:

1. Double-click on the page definition file to open up the overview editor.
Alternatively, if you have the desired JSF page opened in the designer
window, then selecting the Bindings tab will open the corresponding
page definition file editor.

2. Select the Bindings and Executable tab and click on the green plus icon to
create a control binding icon which will be displayed on the Bindings panel.

3. In the Insert Item dialog window, select the Generic Bindings category (if it
is not selected by default) in the drop-down and then select Attribute values
as the item to be created. Click on OK to proceed with the next step. In the
Create Attribute Binding dialog window, select the desired data source
(view object instance) and then the attribute that you want to read from
the selected row in the data source.Click on OK to dispose of the dialog.

The following is an example for an attribute value binding defined by choosing the
Departments collection as the data source:

//This is in page definition XML file
<attributeValues IterBinding="DepartmentsIterator"
id="DepartmentName" >
<AttrNames>
<Item Value="DepartmentName"/>
</AttrNames>
</attributevValues>

Once you have defined the attribute bindings, you can refer to them using the
binding EL expression from the client. For example, the previous attribute value
can be referred to using the ADF binding expression as follows:

#{bindings.DepartmentName. inputvValue}

[315]

Building Data Bound Web User Interfaces

While referring to the attribute definition present in the page definition
. file using the EL expression, always append inputValue to the
% binding expression as shown here: #{bindings.<AttributeName>.
s inputValue}. This makes sure that the framework does the formatting
of the value using the Ul hint pattern present in the view object metadata
before returning to the caller.

Building data bound master-detail Uls

A master-detail Ul allows you to view data from master and detail collections at the
same time. This section discusses declarative support in ADF for building master-
detail screens. The task involves two steps as explained in the following section.

Building a master-detail data model

To build a master-detail Ul, you will need to have a corresponding data model ready
first. If you need a quick brush up on building master-detail data models, refer to

the topic Adding hierarchical view object instances to an application module in Chapter 6,
Introducing the Application Module.

Building a master-detail Ul

Once the data model is ready, you can proceed to building the UI. To build a master-
detail Ul, perform the following steps:

1. Go to the Data Controls panel, expand the master view object instance and
then select the detail view object instance displayed beneath the master view
object node.

Drag the detail view object instance and drop it on page design window.
In the Create context menu, select the desired master-detail template.
If the default UI template provided by the IDE does not meet your requirements,

then you can separately build the master and detail Ul component, explained
as follows.

[316]

Chapter 8

To build a master-detail UI without using the built-in template, drop the master view
object instance from the Data Controls panel on the page by selecting the desired
component. Next, drag the detail view object instance displayed below the master
view object instance from the Data Controls panel and drop it at the desired area

on the page. When you drop the master-details collections on a page, IDE creates
necessary bindings and refreshes the settings for the components. You are done!

What happens at runtime in the master-detail
Ul?

Master-detail coordination is enabled through a view link instance (ViewLinkUsage)
in the application module that connects the appropriate master and detail view
object instances. When you select a master row, the framework eagerly coordinates
the detail collection with the master row by re-executing the detail view object. When
the detail view object instance executes, the framework appends the SQL WHERE
clause from the view link definition to the query with bind values from the new
master row.

Building a data bound tree table Ul

The tree table displays hierarchical data in tabular form by combining both tree and
table UI functionalities in one component. The binding concepts and data model

that we discuss for a tree table component in the following section are very generic
in nature. These concepts are applicable for other hierarchical components as well
such as af: tree and dvt :hierarchyViewer. The following section outlines the basic
steps for building a data bound tree table.

Building hierarchical view objects

To build a model bound hierarchical tree table, first you need to have an appropriate
hierarchical data model ready. All the view objects participating in the tree hierarchy
must be linked through the view link definitions. While defining view links, you
must make sure that the child accessor attribute(s) are enabled on all the parent view
objects participating in the hierarchy.

[317]

Building Data Bound Web User Interfaces

The accessors are generated when you define the view links between view objects.
For example, take a look at the following screenshot that displays view link
properties between DepartmentVO and EmployeeVO. In the View Link Properties
editor, the Generate Accessor option is enabled for DepartmentVO (master

view object) with the accessor name as Employees. When you expand a specific
department node, the framework uses this view link accessor attribute to read the
child employee rows. Note that, under the covers, the framework generates an
internal view object instance to handle the execution of view link accessors.

= View Link Properties @
Source Accessor Destination Accessor
View Object: DepartmentVo View Object: EmployeeVO
Generate Accessor Generate Accessor
["]1In \iew Object: EmplayeeVO In View Object: DepartmentVO
[]In Entity: EmployeeEQ [] In Entity: DepartmentEQ
Accessor Mame:
|Empl0yees
Help 0K Cancel

If you need a quick brush up on defining view links, refer to the topic Linking two
view objects in Chapter 4, Introducing View Objects.

The ADF framework uses view link accessor attributes present in
the parent view object to read the child collection in order to display
tree hierarchies at runtime. The data model hierarchy present in the
s o o .
application module data model does not play any role in displaying data
for a model bound tree component.

Creating a tree table Ul
To build a tree table Ul, perform the following steps:
1. Select the desired data collection (view object instance) in the Data Controls
panel which represents the root node in the tree hierarchy.

2. Drop the selected view object instance on the page. From the context menu,
select Tree | ADF Tree Table. Choosing this will display the Edit Tree
Binding window as shown in the following screenshot:

[318]

Chapter 8

Edit Tree Binding (23]

Select the data source for the root tree node, and dedde which attributes you want to display in
the tree. To add additional tree level rules for child collections, select the parent tree level rule
and dick the Add icon. If no child collections are available for the selected node, the Add icon is

disabled.
Root Data Source: |E HRServiceAppModuleDataControl. Departments '| Add...
Tree Level Rules: 4 i x

B com.packipub.adfguide.ch8.model. view. Departmentvo E Employees I

Accessor: [] Enable Filtering:

Available Attributes: Display Attributes:
» DepartmentiName 5
® &
3 7
K o

Target Data Source

Help QK Cancel

In the Edit Tree Binding editor, select the desired attributes that you want to
display for the root node in the Available Attributes list and shuttle them to

the Display Attributes list. Optionally, you can add basic filtering conditions
for each row in the row set by selecting the Enable Filtering option.

To define the next level of nodes, select the parent node object (view
object) in the Tree Level Rules list and click on the Add Rule icon which
will display the accessors defined on the parent view object. For example,
the previous screenshot displays Employees as an access attribute for
DepartmentVO. When you select the desired accessor, IDE generates the
corresponding child node object under the parent node. Select the display
attributes for the child node as you did for the parent node. Repeat the
previous steps till you finish defining the tree hierarchy.

Click on OK to save changes.

[319]

Building Data Bound Web User Interfaces

What happens when you drop a data collection as a

tree table on a page?

When you build a tree table component by dropping a data collection on a page, the
IDE generates the following:

* Code for the <af : treeTable> component in the JSF page with all generic
properties defaulted with values from the model definition (the topmost
parent view object definition)

* Binding the definition for the tree table which includes an executable iterator
binding and a tree control binding definition

The following example illustrates the tree binding definition for department-
employee hierarchy. Only the top level collection is mapped to the executable
iterator binding. Child elements are loaded on request through the view link
accessor attribute present in the parent view row.

The tree binding contains the node definition for all the node types displayed in the
tree. Node definition includes attribute names displayed in the UI and accessors for
displaying children from each node.

<executables>
<variableIterator id="variables"/>
<iterator Binds="Departments" RangeSize="25" DataControl="HRServiceA
ppModuleDataControl" id="DepartmentsIterator"/>
</executables>
<tree IterBinding="DepartmentsIterator" id="Departments"s>
<nodeDefinition DefName="com.packtpub.adfguide.ch8.model.view.
DepartmentVO" Name="DepartmentsO0">
<AttrNames>
<Item Value="DepartmentId"/>
<Item Value="DepartmentName"/>
</AttrNames>
<Accessors>
<Item Value="Employees"/>
</Accessorss>
</nodeDefinition>
<nodeDefinition DefName="com.packtpub.adfguide.ch8.model.view.
EmployeeVO" Name="Departmentsl"s>
<AttrNames>
<Item Value="EmployeeId"/>
<Item Value="FirstName"/>
<Item Value="LastName"/>
<Item Value="ManagerId"/>
</AttrNames>
</nodeDefinition>
</tree>

[320]

Chapter 8

Decorating the tree table Ul

When you drop a collection as a tree or tree table on the JSF page, IDE generates
the necessary code for displaying a basic af : treeTable Ul component on the
page. For example, the following is the af : treeTable code generated by the IDE
(by default) when we dropped the department-employee hierarchy model from the
Data Controls panel on to a JSF page:

<af:treeTable value="#{bindings.Departments.treeModel}" var="node"
selectionListener=

"#{bindings.Departments.treeModel .makeCurrent }"
rowSelection="single"
id="resIdl" width="300" columnStretching="last">
<f:facet name="nodeStamp">
<af:column id="cl">
<af:outputText value="#{node}" id="ot1i"/>
</af:column>
</f:facet>
<f:facet name="pathStamp">
<af:outputText value="#{node}" id="ot2"/>
</f:facet>
</af:treeTable>

You are free to modify the generated component tag to include more attributes or to
alter the default layout. This is really required in real life applications as the default
UI component tag generated by IDE is very basic. While adding more columns, make
sure the corresponding attributes are available in the tree binding definition present
in the corresponding page definition XML file.

The following example displays the af: treeTable component code with manually
added columns. In this example, the ManagerID column renders the model driven
LOV for Employeevo node. As the tree table does not really need to display the
LOV for the department node, the display of the LOV field is enabled only for the
employee node and it is controlled through the following EL expression: "#{node .
hierTypeBinding.viewDefName == 'com.packtpub.adfguide.ch8.model.view.
EmployeeVO'}".

<af:treeTable value="#{bindings.Departments.treeModel}" var="node"
selectionListener=

"#{bindings.Departments.treeModel .makeCurrent }"
rowSelection="single"
id="tt1l" binding="#{TreeBean.deptTreeTable}"
editingMode="clickToEdit">
<f:facet name="nodeStamp">
<af:column id="cl">
<af:inputText value="#{node.DepartmentId}" id="otl"/>

[321]

Building Data Bound Web User Interfaces

</af:column>
</f:facet>
<f:facet name="pathStamp">
<af:outputText value="#{node}" id="ot2"/>
</f:facet>
<af:column headerText="DepartmentName" id="cll">
<af:inputText value="#{node.DepartmentName}" id="itl1"/>
</af:column>
<af:column headerText="EmployeeId" id="cl2">
<af:inputText value="#{node.EmployeeId}" id="it2"
autoSubmit="true"/>
</af:columns>
<af:column headerText="FirstName" id="cl3">
<af:inputText value="#{node.FirstName}" id="it3"/>
</af:column>
<af:column headerText="ManagerID" id="cl0">
<af:inputComboboxListOfValues rendereds=
"#{node.hierTypeBinding.viewDefName ==
'com.packtpub.adfguide.ch8.model.view.EmployeeVO' }"
id="managerIdId"
popupTitle=
"Search and Select #{node.bindings.ManagerId.label}"
value="#{node.bindings.ManagerId.inputValue}"
model="#{node.bindings.ManagerId.listOfValuesModel}"
partialTriggers="it4" label="LOV">
<f:validator
binding="#{node.bindings.ManagerId.validator}"/>
<af:convertNumber groupingUsed="false"
pattern="#{node.bindings.ManagerId.format}"/>
</af:inputComboboxListOfValues>
</af:columns>
</af:treeTable>

What happens at runtime in a data bound
tree table?

When a tree table is displayed, the framework executes the iterator binding for the
top level collection during the initial page load. When you expand a parent node, the
framework identifies the accessor attribute for the child nodes from the tree binding
definition, and then executes the child view object using the accesor attribute in

the parent row.

[322]

Chapter 8

Synchronizing Uls using the target data source

Take a look at the following screenshot. It displays the department-employee tree on
the left-hand side and a detailed employee parameter form for the selected tree node
on the right-hand side. Whenever an employee node selection changes in the tree, the
detailed parameter form on the right-hand side refreshes to reflect the new selection.
The tree binding definition has declarative support for building such screens, which
may help you to synchronize other parts of the page with the selection of a node in
the tree.

> 10 Administration
= 20 Marketing
7 0P

* Employeeld 114

FirstMame | Den

1 | *LastMame | Raphaely
115 Alexander Khoo

116 Shell Baida *Email | DRAPHEAL
117 Sigal Tobias PhoneNumber | 515.127.4561
118 Guy Himuro o — [
119 Karen Colmenares HireDate | 12/7/2002 Q
= 40 Human Resources * JobId | PU_MAM
4 z; lslp'pp'”g Salary 11000
= 70 Public Relations Managerld 100

To enable auto-synchronization between iterators of the same type in a page,
perform the following steps:

1. Open the page definition file in the overview editor and then select the tree
binding whose selection event led to the synchronization of other parts of the
page. Click on the Edit icon on the Bindings panel toolbar.

2. Inthe Edit Tree Binding dialog window, select the desired tree level rule.
Expand the Target Data Source section displayed at the bottom of the dialog
and click on the EL Picker button. In the Variable dialog, expand the ADF
Bindings | bindings node and select the desired target iterator which needs
to be synchronized with the node selection in the current tree binding,.

3. Click on OK to save changes.

[323]

Building Data Bound Web User Interfaces

The following screenshot illustrates the target data source settings for the
EmployeeVO node in the tree. In this example, Employeeslterator is set as
the target data source (target iterator) for the EmployeeVO node.

Edit Tree Binding =5

Select the data source for the root tree node, and dedide which attributes you want to display in
the tree. To add additional tree level rules for child collections, select the parent tree level rule
and dick the Add icon. If no child collections are available for the selected node, the Add icon is

disabled.
Root Data Source: |E HRServiceAppModuleDataControl. Departments '| Add...
Tree Level Rules: 4 h x

(=& com.packtpub.adfguide.chd model. view.DepartmentVO(<Employees>)

B com.packtpub.adfguide.chd.model. view.EmployeeVO

Accessor: ["] Enable Filtering:
Available Attributes: Display Attributes:

CommissionPct & Employeeld L
Departmentld ® Firstiame N
Email Lastiame -
HireDate I
JobId

MananerTd K< o

-] Target Data Source

EL Expression: |S{bindings.Employeeslherahnr} EL Picker

Help QK Cancel

What happens at runtime in the target data source?

Whenever the row selection changes in the source iterator, the binding layer will
try to refresh target iterators by invoking the setCurrentRowWithKey (String
stringKey) method with the Key attribute(s) of the selected row of the source
iterator. All the UI elements bound to the target iterator will change during the
subsequent render response phase in the same request processing cycle. If the new
key is not found in the target iterator, you may not observe any changes on the
target. For this feature to work, the key definition order and type should match
between the source and target iterators.

[324]

Chapter 8

Adding edit functionalities for a tree table

This section discusses adding edit functionalities, such as create and delete, for a data
bound tree table. This is not as straightforward as we did for the table component.
We will discuss this topic with an example which can be generalized

for your use case.

This example uses a department-employee tree hierarchy represented using
DepartmentVO and EmployeeVO view objects:

<af:treeTable value="#{bindings.Departments.treeModel}" var="node"
selectionListener=
"#{bindings.Departments.treeModel .makeCurrent}"
rowSelection="single" id="ttl"
binding="#{TreeBean.deptTreeTable}"
partialTriggers="::cbl ::cb2" editingMode="clickToEdit">
</af:treeTable>

Here are the generic guidelines for adding edit functionalities in a tree or tree
table component.

Configuring the parent view object to retain the
view link accessor row set

While you add new rows in child row sets, it is required to avoid the regeneration of
a child row set every time the Ul is refreshed.This is achieved by setting the Retain
View Link Accesor Rowset flag in the parent view object. To set this flag, open

the parent view object in the overview editor, select the General tab and expand

the Tuning section. Check the Retain View Link Accesor Rowset checkbox. This
ensures that the child row sets are not re-queried while you work on the tree model.
Repeat this for all parent view objects in the tree hierarchy.

Creating utility methods for reading Rowlterator
and selected RowKey for the selected node

Define utility methods in the managed bean to read the row iterator and the
row key for the selected node. Later in this exercise, we will refer to this method
through EL to pass these parameters to the tree update routines defined in the
application module.

[325]

Building Data Bound Web User Interfaces

Open the view controller project and create a managed bean. Add the following
methods in the bean:

/**
* This method returns RowIterator object for currently selected
* row (node)
* @return
*/
public RowIterator getSelectedNodeRowIterator ()
RowIterator ri = null;
//Get the treetable that we deal with in this method
RichTreeTable depTreeTable = getDeptTreeTable() ;
//Store the original Key
Object oldKey = depTreeTable.getRowKey () ;
try {
if (depTreeTable.getSelectedRowKeys () != null) ({
for (Object opaqueFacesKey : depTreeTable.getSelectedRowKeys ())

depTreeTable.setRowKey (opaqueFacesKey) ;
//Get the RowIterator for the lowest node
//in the selected node path

ri = ((JUCtrlHierNodeBinding)depTreeTable.
getRowData ()) .getRowIterator() ;
break;
}
}
} finally {

//Restore the original Key
getDeptTreeTable () . setRowKey (oldKey) ;

}

return ri;

}

/**
* This method returns Key for the selected node
* @return
*/
public Key getSelectedNodeRowKey () {
Key key = null;
RichTreeTable depTreeTable = getDeptTreeTable() ;
//Store the original Key
Object oldKey = depTreeTable.getRowKey () ;

try {
if (depTreeTable.getSelectedRowKeys () != null) (

for (Object opaqueFacesKey
depTreeTable.getSelectedRowKeys ()) {
//Return the Key for the lowest level

[326]

Chapter 8

//in the selection
depTreeTable.setRowKey (opaqueFacesKey) ;

key =
((JUCtrlHierNodeBinding) depTreeTable.
getRowData ()) .getRowKey () ;
break;
}
}
} finally {

//Restore the original Key
depTreeTable.setRowKey (oldKey) ;

}

return key;

}
/

*

The DeptTreeTable used in this example is bound

to UI treeTable component through 'binding' attribute.
e.g: <af:treeTable binding="#{TreeBean.deptTreeTable}". ..
In real life application, instead of binding you can use
Visitor Pattern for reading the UI component. This is
explained in Appendix A of this book.

L R I

~

public void setDeptTreeTable (RichTreeTable deptTreeTable) {
this.deptTreeTable = deptTreeTable;
}

public RichTreeTable getDeptTreeTable() {
return deptTreeTable;
}

If the scope of the managed bean is higher than the request, then you
should not bind the UI components' elements in the JSF page with the
UI component instances defined in a managed bean using the binding
attribute in the component tag. If you do so, you may end up using

Mz stale references of the components when the framework recreates the
component tree. Instead, you can use visitor patterns to look up the
component from the component tree in your managed bean code.
This method is explained in the appendix, titled More on ADF Business
Components and Fusion Page Runtime, of this book. You can download the
appendix from the Packt website link that we mentioned at the beginning
of this book, in the Preface section.

[327]

Building Data Bound Web User Interfaces

Implementing create and delete methods in the
application module

Add the following methods to create and delete children in your application module
implementation class and expose them for use by the client through data control.

* The createChildren (RowIterator, Key) method adds new nodes to
the child row set of currently selected nodes. The caller of this method is
expected to pass the iterator holding the selected node and its Key.

e The deleteChildren (RowIterator, Key) method deletes the node
identified by the Key passed by the caller. The caller of this method is
expected to pass the iterator holding the selected node and its Key.

This is shown in the following code:

// In application module implementation class

/**

*This method adds node to the child rowset of
*currently selected node.

* If no node is selected, new node is added to top
*level parent rowset.

* @param ri

* @param selectedNodeKey

*/

public void createChildren (RowIterator ri, Key selectedNodeKey) {

final String deptViewDefName = "com.packtpub.adfguide.ch8.model.
view.DepartmentVvo";

final String empViewDefName = "com.packtpub.adfguide.ch8.model.view.
EmployeeVO";

if (ri != null && selectedNodeKey != null) {

//Find the Row, using selected node key
Row[] found = ri.findByKey (selectedNodeKey, 1) ;
if (found != null && found.length == 1) {
Row foundRow = found[O0];
String nodeDefname =
foundRow.getStructureDef () .getDefFullName () ;
//Identify the underlying view object for the
//selected node
//and insert new row as child to the selected
//node by accessing the
//child rowset use accessor attribute
if (nodeDefname.equals (deptViewDefName)) {
RowSet childRows =
(RowSet) foundRow.getAttribute ("Employees") ;
Row childrow = childRows.createRow() ;

[328]

Chapter 8

childRows.insertRow (childrow) ;
} else if (nodeDefname.equals (empViewDefName)) {
RowSet childRows =
(RowSet) foundRow.getAttribute ("Reportees") ;
Row childrow = childRows.createRow () ;
childRows.insertRow (childrow) ;

}

} else {
//Row not found for selected node
System.out.println("Node not Found for " +
selectedNodeKey) ;

} else {
// No node was selected when this method is called, create node
at top level parent VO
ViewObjectImpl vo = getDepartments() ;
Row foundRow = vo.first();
Row childrow = vo.createRow() ;
vo.insertRow (childrow) ;

/**
* Deletes the selected node
* @param ri
* @param selectedNodeKey

*/
public void deleteChildren(Rowlterator ri, Key selectedNodeKey) {
if (ri != null && selectedNodeKey != null) (

//Finds the row using the Key passed by the caller
Row[] rows = ri.findByKey (selectedNodeKey, 1);
if (rows != null) {
for (Row row : rows) ({
//Delete the row
row.remove () ;

}

} else {
System.out.println("Node not Found for " + selectedNodeKey) ;

}

[329]

Building Data Bound Web User Interfaces

Creating a new row

Drag the createChildren method from the Data Controls panel and drop it as an
ADF Button on the page. Specify the parameter values using the managed bean
method that we defined for the reading row iterator and selected node key. You
can use the EL Expression Builder for picking up the right expression. Set the ADF
Button (af : commandButton) as partialTrigger for the af:treeTable component.

Here is an example for <methodActions> binding for the createChildren method
(in the page definition file):

<methodAction id="createChildren" RequiresUpdateModel="true"
Action="invokeMethod" MethodName="createChildren"
IsViewObjectMethod="false"
DataControl="HRServiceAppModuleDataControl"
InstanceName=
"data.HRServiceAppModuleDataControl.dataProvider">
<NamedData NDName="ri"
NDValue="#{TreeBean.selectedNodeRowIterator}"
NDType="oracle.jbo.Rowlterator"/>
<NamedData NDName="gelectedNodeKey"
NDValue="#{TreeBean.selectedNodeRowKey}"
NDType="oracle.jbo.Key"/>
</methodAction>

Deleting a row

Drag the deleteChildren method from the Data Controls panel and drop it as an
ADF Button on the page. Specify the parameter using the managed bean method
that we defined for reading the selected node row iterator and selected node key.
You can use the EL Expression Builder for picking up the right expression. Set the
Create command button as partialTrigger for the af: treeTable component.

Here is an example for the <methodAction> binding for the deleteChildren method:

<methodAction id="deleteChildren" RequiresUpdateModel="true"
Action="invokeMethod" MethodName="deleteChildren"
IsViewObjectMethod="false"
DataControl="HRServiceAppModuleDataControl"
InstanceName=
"data.HRServiceAppModuleDataControl.dataProvider">
<NamedData NDName="ri"
NDValue="#{TreeBean.selectedNodeRowIterator}"
NDType="oracle.jbo.RowIterator"/>

[330]

Chapter 8

<NamedData NDName="selectedNodeKey"
NDValue="#{TreeBean.selectedNodeRowKey}"
NDType="oracle.jbo.Key"/>
</methodActions>

A working example illustrating the usage of APIs for performing edit
W\l functionalities on a model driven af : t reeTable component can
-~
be found in the example code that we mentioned at the beginning
of this book, in the Preface section. To access the example code, open
the ADFDevGuideCh8 workspace in JDeveloper and look for the
treeCRUD. jsf page in the ViewController project.

Programmatically refreshing the
tree hierarchy

To forcefully refresh the tree hierarchy, executing the top level view object instance
alone is not enough. This is because when you expand a parent node, if the
framework identifies any existing query collection for the row filter supplied by
the parent row, the existing query collection cache will be reused for displaying
child nodes. To refresh specific child nodes, you will have to find the appropriate
child row set and refresh it by calling the executeQuery () method. The following
example executes the child Employees row set for a specific DepartmentId.

/**
* Method to refresh child nodes for a specifc department
* @param deptId
*/
public void refreshChildEmployees (Number deptId) {
//Gets the VO used for parent node
ViewObjectImpl vo = getDepartments() ;
//Read the row using Key DeptID
Row[] deptRow = vo.findByKey
(new Key(new Object[] { deptId }), 1);
//Get child rows RowSet view link accessor
//attribute and call executeQuery on it
RowSet childRows =
(RowSet) deptRow [0] .getAttribute ("Employees") ;
childRows.executeQuery () ;

}

[331]

Building Data Bound Web User Interfaces

Accessing web tier values from
business components

Rich enterprise applications that we deal with today call for extensive interactions
between client and server layers. Oracle ADF is designed keeping this point in
mind. When you work on a business application, you may find many use cases on
initializing business components (business service layer) with values from the web
tier, such as the logged in user's locale and city. This raises mainly the following
two questions:

* How does the client pass the web tier parameter values to the business
service implementation?

* Where can the parameter values be stored for later use?

The following section will help you to find answers to both these questions.

Using ADFContext to access client specific
scoped variables

ADF deploys the oracle.adf.share.ADFContext class to share context between
the client and server. ADFContext exposes APIs for accessing client specific memory
scopes such as request, session, page flow, and application scopes. For example,
ADFContext.getCurrent () .getPageFlowScope () returns a page flow scope map
from the ADF Faces tier. Usage of ADFContext is one solution for accessing the web
tier values business component. However this has serious drawbacks as discussed
in the next section.

How does ADFContext provide uniform access
across layers?

When a request from a client reaches the server, the framework creates an oracle.
adf . share.ADFContext instance to hold the state (context) of the current request
such as configuration settings, security context, and client state, and associate

this instance with the current thread as thread local variables. When a business
component class such as an application module, view object, and entity object calls
ADFContext.getCurrent (), the framework returns an already initialized instance to
the caller.

[332]

Chapter 8

The pitfalls of using ADFContext

The following are the pitfalls of using ADFContext:

* Business services implementation that uses ADFContext to access a client
specific scoped variable becomes less reusable in the long run. If your
application may need to support multiple client technologies later, there is
no guarantee that all these technologies will have support for all the memory
scopes exposed through the ADFContext object.

* If you follow the Test Driven Development (TDD) methodology, the
code that uses ADFContext to directly refer to the client specific memory
scopes may fail as the web container is missing when you run tests in the
standalone mode.

* Later when you expose application modules as business services, code that
directly reads client specific scopes may fail as the request may be from a
different host.

Passing web tier values as parameters to
business service methods

In this approach, a business service will expose a method to read parameters from
the client, which will be stored in a common storage area for later use. This approach
does not suffer from any drawbacks that we discussed for the first approach. The
implementation is discussed as follows.

Establishing a channel for passing web tier values
to the business service layer

You can define a custom method in an application module or in a view object that
takes necessary parameters. To learn how to expose a method from an application
module, refer to the topic Exposing business service methods through data control in
Chapter 6, Introducing the Application Module.

Using the user session data map to store values
passed from the client

For the next step, we may need to decide on a storage area for parameters set by the
client. Remember our discussion, in Using user session data map, for storing session
specific data in Chapter 6, Introducing the Application Module. We will use the user data
map associated with an application module for storing parameter values. Session
data map from a root application module is accessible from all containing business
components, either programmatically or using Groovy expressions.

[333]

Building Data Bound Web User Interfaces

When should the client invoke the method that

takes web tier values?

Ideally, this should happen before the system starts processing the page which uses
web tier values for processing query or business logic. ADF provides a declarative
solution for this case too, as follows.

ADF Controller supports the method call activity in the navigation flow which can
be wired to methods exposed through a view object or application module. We can
use this approach to pass web tier values to the server. Apparently, the method call
activity for such use cases may appear as an intermediate step for all navigation cases
to the target page that contains business logic based on web tier values. At runtime,
when you navigate to the target view, ADF Controller invokes the method call
activity to set the parameter values to the user session data map before displaying
the page.

Making the user session data map
passivation safe

The previous approach works well if the business components do not need the
value set by the client while serving the next request from the same client. If the
business components need values stored in a user session data map across requests,
you may need to make sure that the values set in the session data map survives the
activation-passivation cycle of an application module. This is done by overriding
the activateState (Element) and passivateState (Document, Element) methods
in the corresponding application module implementation class. Refer to the topic
Programmatically passivating custom data in Chapter 6, Introducing the Application
Module, for code samples.

An example illustrating the usage of the user session data map for passing client side
values to the middle tier is discussed later in this chapter under the section entitled
Initializing criteria item values using web tier values.

Building data bound query search forms

The search functionality has become a very essential feature for any enterprise
application which may need to deal with tons of data. The Oracle ADF framework
has out of the box support for building feature rich search panels when you use the
view object for querying the data source. In fact the implementation is much easier
than you thought.

[334]

Chapter 8

ADF uses the model-driven approach for building query components whose query
model is derived from the view criteria that you defined in a view object. We have
discussed view criteria in Chapter 4, Introducing the View Object, when we talked
about view objects. In this section, we are revisiting the same topic to discuss some
more points which we deferred then for later discussion.

Building the view criteria

To create a view criteria in a view object, perform the following steps:

1. Open a view object in the overview editor and then select the Query tab.

2. Inthe Query tab, expand the View Criteria section, and click on the green
plus icon to create a new View Criteria icon. Doing so will display the Edit
View Criteria dialog window as shown in the following screenshot:

- Edit View Criteria (=53]

Criteria Name: [DepartmentViewCriteria | Query Execution Mode: |Daiﬁbase 'l

Criteria Definition UI Hints

View Criteria: View Object Where Clause:
E—a DepartmentViewCriteria ((DepartmentEQ.DEPARTMENT _MAME = :bindVarDeptiame)
=) Group AND (DepartmentEQ.LOCATION_ID = :hindVarLocId) AND

B YD parmentiiame = :bindVarDepthame (EXISTS(SELECT 1FROM EMPLOYEES EmployeeEQ WHERE (
y y _ (EmployeeEQ . EMPLOYEE _ID = :bindVarEmpld)) AMD

(=2 AND Locationld = .b.lnd\."arLDr_Id (DepartmentEQ, DEPARTMENT ID =

(=[5 AND EmployeeVO EXISTS EmployeeEQ. DEPARTMENT _ID))))

= {F Criteria

=-() Group
‘... @@ Employeeld = :bindvarEmpld

Add Item Delete Explain Flan... Test
Criteria Item
Ignore Case

Attribute: |Depart‘nentNarne v| Ignore Mull values
Operator: |Equals ~| Vadation: |optional =
Operand: |Bind Variable '|

Parameter: |bind\."arDE|:|ﬂ'-Jame '| EF

Help QK Cancel

[335]

Building Data Bound Web User Interfaces

3. In Edit View Criteria, enter the criteria name and select the Query Execution
Mode. The possible values for Query Execution Modes are as follows:

[e]

Database: Filtering is done on the database. This is the default mode.

o

In Memory: Filtering is performed on the in-memory row set
produced by the view object.

Both: Filtering is performed on the database first, followed by in-
memory. This mode is useful to filter out the newly added un-posted
rows from the row set.

4. To add the criteria items for searching, select the Group node in the view
criteria tree where you want the new criteria item to appear and click on the
Add Item button. Specify values for Attribute, Operator, and Operand.

The view criteria item can take view accessor attributes as well. When you
use the accessor attribute in a criteria item, the framework will generate the
EXISTS clause for the target view object at runtime.

The criteria item value can be specified as a literal or bind variable. You
may use bind variables to initialize a criteria item with some default static
or dynamic values. Also, this usage has all the advantages of using a bind
variable in a query such as caching query string and improved performance.
Here are some tips for bind variable usage:

o

Bind variables used in a query component should be marked as
Optional. Mark it as Required only if that appears in the query
defined in the view object.

All bind variables marked as Required will be displayed in the
Search panel as separate fields. Set the display hint to Hide to hide
the bind variables from display.

If you use literal values for a criteria item, then do not assume

that the framework will blindly append the WHERE clause

with literal values to the query at runtime. The framework

~ plays smarter here and creates temporary bind variables for
holding literal values. This special behaviour is controlled
through the useBindvarsForViewCriteriaLiterals
property present in the view criteria instance. This property
can be configured globally in adf -config.xml (which is
true by default).

[336]

Chapter 8

To perform a case insensitive search for each view criteria item, select the
Ignore Case checkbox. The Validation option helps you to configure a
"required" field validation for the criteria item. The possible options are
Required, Selectively Required, and Optional. When you mark multiple
criteria items as Selectively Required, at least one "selectively required"
criteria item in this group should have a value to search.

The Add Group button creates new groups for holding criteria items.
This is useful to group the query conditions logically based on use case
requirements. The Add Criteria option defines new criteria which takes
groups and criteria. The Add Named Criteria option adds existing named
criteria in the current criteria.

Using Ul hints to control the display for a query

component

The UI Hints tab for the Edit View Criteria dialog allows you to define display hints
for the view criteria which will be used by the query component at runtime to render
the display. The following Ul hints options are available with the view

criteria definition:

Search Region Mode: The search region mode allows you to specify the
initial display mode such as Advanced or Basic for the query panel.

Show Operators: This is the display mode in which operators for the criteria
item are displayed.

Query Automatically: This mode fires the query automatically when the
page with search panel is loaded.

Show Match All Match Any: This displays the Match All and Match Any
options for criteria items in the query component. The default selected is
Match All.

Rendered Mode: The Rendered Mode controls the display of criteria items
in the search screen.

Display Width: The display width allows you to override the default width

for a criteria item. The default width is derived from the attribute definition
in the view object.

Once you are done with the model definition for the query component, next is
building your Ul using the named criteria definition in a view object.

[337]

Building Data Bound Web User Interfaces

Building a search Ul
To build a search Ul, perform the following steps:

1. Select the desired view object instance in the Data Controls panel and
expand the Named Criteria node to display all the view criteria defined in
the view object.

2. Drag the desired view criteria and drop it on the appropriate area in a page.
From the context menu, choose Create | Query | ADF Query Panel with
Table or Create | Query | ADF Query Panel with Tree Table. This is
shown in the following screenshot:

Appﬁcatinnllavigatnr M| (=) |[@]queryDept.jsf x

ADFDevGLideChd > [&l -|| T - | show~| 1500 x 1200 ~|[@] ||none
=+ Projects Bl V&~ |

+| Application Resources

=| Data Controls &

E% HRServiceAppModuleDataControl Create

=] Depertments —> I 8 4% cuer Pone
-] Departmentld Table ;<= ADF Query Panel with Table...

;&8 DepartmenthName @8 ADF Query Panel with Tree Table...
-8 Locationld Cancel

(598 Managerld
{E EmployeesForDepartment
D Operations
E||_:| Named Criteria
F‘-ﬁ All Queriable Attributes
F‘-ﬁ DepartmentViewCriteria
E: | Receﬁ\; Cpened Files

You can even build a Query component separately and later add the result component.

What happens when you drop a view criteria as a
query component on a page?
When you build a query component by dragging and dropping view criteria on a

page, the IDE generates the following:

* Code for the <af : query> component in the JSF page with all generic
properties defaulted with values from view criteria definition though a
binding EL expression

* Executable <searchRegion> binding for the query component

[338]

Chapter 8

The following is an example for the executable <searchRegion> binding
present in the page definition file:

<searchRegion Criteria="DepartmentViewCriteria" Customizer=
"oracle.jbo.uicli.binding.JUSearchBindingCustomizer"
Binds="DepartmentsIterator" id="DepartmentViewCriteriaQuery"/>

Commonly used properties of the search region
binding
You are allowed to modify the default values of the searchregion binding if the

use cases demands so. The following are the commonly used properties of
search binding:

* TrackQueryPerformed: This flag causes to restore queried state when you
navigate back to the search page. If you want to restore the queried state
between page flows, then set TrackQueryPerformed = "PageFlow"
(which is default), otherwise set TrackQueryPerformed = "Page".

How does the framework track user search actions?

The search binding sets the queryPerformed flag to true when you perform
search. If TrackQueryPerformed is set as PageFlow, then the framework the
tracks the queryPerformed flag at page flow level. When the user navigates
back to the search page later, the framework restores the previous state by
re-executing the query if queryPerformed is true.

* InitialQueryOverridden: Set this flag to true to display result of the
pre-executed query result in the result table. For example, you will set this
flag to true in order to display the result of the view object execution that
happened outside the context of the current page with search binding. This
flag overrides the default AutoQuery or ClearRowset behavior of search
binding. This behavior is explained in the following section.

What is AutoQuery or ClearRowSet behavior?

When a model bound query component renders, the framework will check the
Query Automatically property set for the underlying view criteria to decide

on the behavior of the query component during the page load. If this flag is true,

the search binding will execute the query in the view object during page load.

If this is set to false, then the search binding will clear the row set by calling the
executeEmptyRowSet () method on the underlying view object implementation. The
executeEmptyRowSet () method marks view objects as executed and skips further to
refresh calls on the default row sets in the same page lifecycle. This is the reason why
you see an empty result table when you load the search page.

[339]

Building Data Bound Web User Interfaces

To learn more about the data bound query component, refer to Creating
ADF Databound Search Forms in Oracle Fusion Middleware Fusion
M Developer's Guide for Oracle Application Development Framework. To
Q access the documentation online go to http://www.oracle.com/
technetwork/developer-tools/jdev/documentation/index.
html and choose Oracle JDeveloper and ADF Documentation Library |
Fusion Developer's Guide. Use the Search option to find specific topics.

Initializing criteria item values using web
tier values

The view criteria has declarative support for defaulting criteria item values. While
defining criteria items, you can specify a bind parameter as a value which can be
defaulted using a Groovy expression.

What if you need to initialize fields displayed in the Search panel with values

from the web tier; for example, defaulting the location field with the logged in
user's default location? As ADF uses view criteria to define the model for the query
component, we are back to the same topic that we discussed a while ago, that is,
Accessing web tier values from business components. This section implements the
second approach that we discussed for passing web tier values. The detailed

steps are as follows:

1. Generate the application module implementation class and define a method
that initializes the user session data map with values passed by the client and
then expose the method for use by the client. Refer to Exposing the Business
Service Method through Data Control in Chapter 6, Introducing the Application
Module, if you need a quick brush up on this topic. The following is
an example:

//In application module implementation class

/**

* Application Module method to Init User Data Map

* @param locationId

*/

public void initSessionWithUserLoc (Integer locationId){
getSession () .getUserData () .put ("USER_LOC", locationId) ;

}

The data storage mechanism for holding a value passed by the client is in
place now.

[340]

Chapter 8

To set this user session data object as a value for the desired criteria item,
open the view object in the overview editor. Select the Query tab and define
a bind variable with a default value using a Groovy expression that accesses
the session user data map, that is, adf . userSession.userData.USER_LOC.
When you set a Groovy expression as a default value for bind variables make
sure you selected Expression as the value type in the Bind Variable editor.

Create a view criteria whose criteria item needs to be defaulted with a value
from the web tier. Select the desired criteria item and set the bind variable
that we defined in a previous step as a parameter value.

In the next step, we may need to figure out a place to call the application
module method that we defined at the beginning for passing the client
side values.

To execute the application module method that reads client parameters
before displaying the target page, double-click on the desired task flow XML
file or adf-config.xml to display the navigation diagram window. Drag the
desired method (initSessionWithUserLoc in our example) from the Data
Controls panel and drop it as a method activity and set the client specific
parameter as a value to the method parameter when asked, for example,
#{pageFlowScope.locId}. An example navigation case is shown in the
following diagram:

department

&)

mainView initSessionWithUserLoc

initSessionWithlserLoc

&)

searchView

At runtime, when you navigate to the target page that displays the query
component, the framework does the following behind the scenes:

1. The ADF Controller invokes the method activity before displaying
the view.

2. Once the method activity is executed, the system navigates to the
target view.

[341]

Building Data Bound Web User Interfaces

3. When the target page renders the query component, the framework
resolves the underlying view criteria in order to build the model
for the query component. During this stage, the criteria item that is
mapped to the session user data map through the bind variable reads
the value by evaluating the Groovy expression (adf .userSession.
userData.USER_LOC.). This value is displayed in the Search panel
as the default value for the criteria item.

Programmatically controlling the display of a
query component

When a model-driven query component is rendered, the framework reads the
underlying view criteria definition to render individual fields. Individual attributes
used in the view criteria inherit the UI hints set at view object level.

What if you want to hide a specific criteria item based on a user profile at
runtime or want to alter the display hints, such as display width or search
field label, dynamically?

The View Criteria Editor window allows you to override basic Ul hints such as
display hint and display width for individual criteria. However, more granular
level settings are not supported in the declarative mode as of now.

You can go for a programmatic solution for such use cases. To programmatically
control the display of individual criteria items in the view criteria, you may want
to do the following tasks:

1. Create a custom oracle.jbo.AttributeHints implementation class.

2. Opverride the method getCriterialtemAttributeHints (ViewCriterialtem)
in the view object implementation class to return the custom implementation
for oracle.jbo.AttributeHints.

The following is an example that returns custom AttributeHints implementations
for a specific view criteria item. The CustomCriteriaAttrHints implementation
used in this example is given as follows. This example returns custom format for
the view criteria item. We are keeping this example simple to explain the concepts
behind implementation; you can make it more dynamic by adding more

realistic implementation.

* %

*This demo implementation overrides getHint () to return

* hard coded value for Date format.

* In real life application you can take the values from a
* common user preference class:

[342]

Chapter 8

*/
public class CustomCriteriaAttrHints extends RowAttrHintsImpl
ViewCriteriaItem vcItem;

public CustomCriteriaAttrHints (ViewCriterialtem vci) {
super () ;
veIltem = vei;

@Override

protected AttributeHints getFormatAttributeHintsInternal
(LocaleContext locale) ({
return vcItem.getAttributeDef () .getUIHelper () ;

@Override

protected AttributeHints getAttributeHintsInternal
(String hintName, LocaleContext locale) {
return vcItem.getAttributeDef () .getUIHelper () ;

@Override
public String getLocaleName
(LocaleContext locale, String sName) {
return vcItem.getAttributeDef () .getUIHelper ().
getLocaleName (locale, sName) ;

@Override
public String[] [] getCompOpers (LocaleContext locale) {
return vcItem.getAttributeDef () .getUIHelper() .
getCompOpers (locale) ;
}
@Override
public String getHint (LocaleContext locale,
String sHintName) {
if (AttributeHints.FMT FORMAT.equals (sHintName)) {
return "yyyy-MM-dd";
} else {
return getAttributeHintsInternal (sHintName,
locale) .getHint (locale, sHintName) ;

[343]

Building Data Bound Web User Interfaces

The next step is to override the method getCriterialtemAttributeHints
(ViewCriteriaItem) in the view object implementation class to return the
CustomCriteriaAttrHints that we use in this example. This method will

be engaged every time the ADF framework renders a query component.

The following code snippet in the view object implementation class returns

the CustomCriteriaAttrHints implementation for the criteria item with
oracle.jbo.domain.Date as the attributes type. In other words, this example
provides a custom format for the Date data type appearing in the Search panel.

//In view object implementation class
/**
* This method overrides the runtime display of criteria
* items that appear inside a query component. *
*/
@Override
public AttributeHints getCriterialtemAttributeHints (ViewCriteriaItem
vei) |
//Apply the custom hints for VC Item type-
//oracle.jbo.domain.Date
if ("oracle.jbo.domain.Date".equals (
vci.getAttributeDef () .getJavaType () .getName ())) {
CustomCriteriaAttrHints attrHints=
new CustomCriteriaAttrHints (vei) ;
return attrHints;

}

return super.getCriterialtemAttributeHints (vci) ;

Programmatically retrieving view criteria used
for a query component

The af : query component allows you to intercept the query execution through the
custom queryListener method defined in a managed bean. The queryListener is
called when the user performs a search. The following <af : query> uses the custom
queryPerformed (QueryEvent) method defined in the SearchBean as a

query listener:

<af:query id="gryIdl" headerText="Search" disclosed="true"
value="#{bindings.DeptViewCriteriaQuery.queryDescriptor}"
model="#{bindings.DeptViewCriteriaQuery.queryModel}"
queryListener="#{SearchBean.queryPerfromed}"
queryOperationListener=
"#{bindings.DeptViewCriteriaQuery.processQueryOperation}"
resultComponentId="::resIdl"/>

[344]

Chapter 8

What if you want to retrieve the values set by the user in a query component,

from the query listener method? The view criteria provides a model for a query
component. The following example illustrates the binding APIs to retrieve the view
criteria from a query component. This is useful if you need to intercept the default
search invocation to customize the view criteria used for executing queries. The
following code snippet appends an extra view criteria row (DepartmentId=10)on
to the view criteria object retrieved from the query component and then processes
the query.

//In managed bean class

/**
* A custom queryListener
*/
public void queryPerfromed (QueryEvent queryEvent)
DCBindingContainer bc = (DCBindingContainer)BindingContext.
getCurrent () .getCurrentBindingsEntry () ;
DCBindingContainer searchBinding = (DCBindingContainer)bc.
findExecutableBinding ("DeptViewCriteriaQuery") ;
String criteriaName = JUSearchBindingCustomizer.
getCriteriaName (searchBinding) ;
ViewCriteria vc = JUSearchBindingCustomizer.
getViewCriteria (searchBinding, criteriaName) ;
ViewCriteriaRow vcrl = vc.createViewCriteriaRow () ;
vcrl.setAttribute ("DepartmentId", "10") ;
vc.addRow (verl) ;
invokeQueryEventMethodExpression
("#{bindings.DeptViewCriteriaQuery.processQuery}",

queryEvent) ;
}
/**
* Invoke Query EL
*/

private void invokeQueryEventMethodExpression (String expression,
QueryEvent queryEvent) {

FacesContext fctx = FacesContext.getCurrentInstance() ;
ELContext elctx = fctx.getELContext () ;
ExpressionFactory efactory =
fctx.getApplication() .getExpressionFactory () ;
MethodExpression me =
efactory.createMethodExpression(elctx, expression,
Object.class, new Class[] { QueryEvent.class });
me.invoke (elctx, new Object[] { gqueryEvent });

[345]

Building Data Bound Web User Interfaces

Programmatically resetting a
query component

In some scenarios you may need to programmatically reset the query component
as part of some user action on the screen. For example, when you display a query
component in a pop up, you may need to programmatically reset the previous state
of the query component before displaying the pop up a second time. The following
code snippet will help you to programmatically reset the query component:

//In managed bean class

Public void resetDeptQuery () {

//Get Query Component instance

RichQuery deptQuery = getDeptQuery () ;

QueryModel model = deptQuery.getModel () ;
QueryDescriptor gd = deptQuery.getValue() ;

//Reset the Query Model and refresh

model .reset (gd) ;

deptQuery.refresh (FacesContext.getCurrentInstance()) ;

}

\ Search binding will not try to refresh criteria item values on each
~ invocation. If the criteria item in a view criteria uses some dynamic EL
Q expression and you want search biding to re-evaluate the latest value,
then call saveState () onthe ViewCriteria instance.

Search on a tree table

When you use the view criteria defined in the root view object to search a tree, the
framework, by default, searches only on the root view object. To filter out the child
nodes based on the criteria entered by the user, you may need to override the
createViewLinkAccessorRS (AssociationDefImpl assocDef, ViewObjectImpl
accessorVO,Row masterRow, Object[] values) method in the parent view object
implementation class and programmatically set the desired search condition for the
child row set. The framework, then, invokes the previous method to create child
nodes for a tree or tree table when the user expands the parent node.

The following example illustrates the tree search for a department-employee hierarchy.

This example uses the view criteria defined in DepartmnetVo to build a search form
for a tree table. You can include attributes from child view objects as criteria items to
make the search more meaningful. For instance, the following view criteria definition
adds FirstName from EmployeeVO as a criteria item.

[346]

Chapter 8

= Edit View Criteria ==

Criteria Mame: |DepartmentViewCriteria | Query Execution Mode: |Dambase v|

Criteria Definition UI Hints

View Criteria: View Object Where Clause:
T DepartmentViewCriteria { (DepartmentEQ.DEPARTMENT _MAME = :bindVarDeptiame)
= () Group AND (DepartmentEQ, LOCATION_ID = :bindVarLocId) AND

... Departmenthame = :bindVarDeptiiame (EXISTS(SELECT 1FROM EMPLOYEES EmployeeEOQ WHERE (
| . o (EmployeeECQ FIRST_NAME = :hindVarFirsthame)) AND
& AND Locationld = : bindvarLocld (DepartmentEQ. DEPARTMENT 1D =
=& AND Employees EXISTS EmployeeEQ. DEPARTMENT_ID})))
&[G Criteria
El{] Group

e fFirstilame = thindVarFirstiame
Add Item Delete Explain Plan... Test
Criteria Item
Ignore Case

Attribute: |FirstName v| Ignore Null Values
Operator: |Equals '| Validation: |O|:|ﬁona| o]
Operand: |Bind Variable '|

Parameter: |bindi-'arFirs1Name '| 4

Help oK Cancel

After defining the view criteria in a parent view object, define the necessary WHERE
clause or view criteria in the child view object which will be used for filtering out
the child rows from the method createviewLinkAccessorRS in the parent view
object. This example uses EmployeeViewCriteria defined in Employeevo for
filtering the employee row set. EmployeeViewCriteria contains FirstName

as the view criteria item.

Open the parent view object implementation class and override createviewLinkAcc
essorRS (AssociationDefImpl, ViewObjectImpl,Row, Object[]).The following
implementation overrides createviewLinkAccessorRS () in DepartmentVOImpl.
This method applies EmployeeViewCriteria on to the child accessor view object
(EmployeeVo) in order to filter out employee rows. Note that this example refines the
employee rows based on the value entered for bindvarFirstName in the search form.

/**
* This method is called by framework to create view link accessor for
associated detail view objects

*/
@Override
protected ViewRowSetImpl

[347]

Building Data Bound Web User Interfaces

createViewLinkAccessorRS (AssociationDefImpl
associationDefImpl, ViewObjectImpl accessorVO,
Row parentRow, Object[] object) {
//Create View Link Accessor for detail VO that
//is linked through view link

ViewRowSetImpl viewRowSetImpl =
super.createViewLinkAccessorRS (associationDefImpl,

accessorVO, parentRow, object) ;

//Get the View Criteria defined on child VO
//and pass bind parameter values to it.
//This will be used when framework later
//executes child viewRowSetImplin the execution cycle
ViewCriteriaManager vcm = accessorVO.
getViewCriteriaManager () ;
ViewCriteria vc = vcm.getViewCriteria
("EmployeeViewCriteria") ;
VariableValueManager vvm = vc.ensureVariableManager () ;
vvm.setVariableValue ("bindVarEmpFirstName",
getbindVarFirstName ()) ;
accessorVO.applyViewCriteria (vc) ;

return viewRowSetImpl;

What happens at runtime in a tree
table search?

At runtime, when you expand a parent node, the framework will invoke
createViewLinkAccessorRS on the parent view object to identify the child
row set. The logic for filtering child rows will be executed during this stage.

Building a data bound multi select list

The selection components allow the user to select single and multiple values from a
list. The ADF framework offers a variety of data bound multi select Ul components.

To create a data bound multi select component, drag a collection from the Data
Control panel on to a JSF page. In the opened context menu, choose Multiple
Selection | ADF Select Many Choice (or any other suitable multi select component).
Select the base and display attribute in the Edit List Binding dialog window and
click on OK.

[348]

Chapter 8

When you drop a collection as multi select components, IDE generates the following:

* Component code in JSF page

* Iterator and list binding in the page definition file

Programmatically accessing selected rows

The following code snippet illustrates the binding APIs for accessing selected
rows in a list binding. The list binding used in this example is built by dropping
the Departments view object as ADF Select Many Choice on the JSF page. The
following is the list binding entry from the page definition file:

<list IterBinding="DepartmentsIterator"
ListOperMode="multiSelect" ListIter="DepartmentsIterator"
id="Departments" SelectItemValueMode="ListObject">

</list>
You can access the selected items from the managed bean code using binding APlIs.
The following is an example:

//In managed bean class
public void processSelectedItems () {
BindingContext bctx = BindingContext.getCurrent () ;
BindingContainer bc = bctx.getCurrentBindingsEntry () ;
JUCtrlListBinding departsments =
(JUCtrlListBinding)bc.get ("Departments") ;
int [] selectedIndices = departsments.getSelectedIndices() ;
for (int indx : selectedIndices) {
Row row = departsments.getRowAtRangeIndex (indx) ;
//Work with row
processSelectedItem (row) ;

Overriding Ul hints in a view object

The ADF framework allows you to override UI hints defined in a view object at
runtime. This is done by overriding createvViewRowAttrHints (AttributeDefImpl
attrDef) in oracle.jbo.server.ViewRowImpl for the view object. The framework
engages this method to retrieve control hints when a row is rendered on the UL

[349]

Building Data Bound Web User Interfaces

There are two steps to supply custom row attribute hints for a view object:

1. Create a custom view row attribute hints implementation class extended
from oracle.jbo.server.ViewRowAttrHintsImpl. This class will have the
logic to return custom attribute hints.

2. Generate a view row class, and override createViewRowAttrHints (Attrib
uteDefImpl attrDef) in the class to return customized row attribute hints
implementation.

The following example illustrates the usage of attribute hints in the view object

to control the runtime display of Ul elements. This example hides the Manager1d
attribute for normal business users. The term "normal user" in this example refers to
the business user of the application without any special privileges.

The customRowAAttrHintsImpl class used in this example functions as follows.
This implementation returns a "hide display" hint for the Manager1d attribute for
normal users.

//In the view row attributes hints implementation class
class CustomRowAAttrHintsImpl extends ViewRowAttrHintsImpl {

public CustomRowAAttrHintsImpl (AttributeDefImpl attr, ViewRowImpl
viewRow) {

super (attr, viewRow) ;

}

@Override
public String getHint (LocaleContext locale, String sHintName)
//If attribute is ManagerId, execute custom hint

if (getViewAttributeDef () .getName () .equals ("ManagerId")) ({
if (ViewRowAttrHintSImpl.HINT_NAME_DISPLAY_HINT.
equals (sHintName)) {

if (isNormalUser())
//For normal user return 'Hide'
//else return 'Display’
return ViewRowAttrHintsImpl.
ATTRIBUTE DISPLAY HINT HIDE;
else
return ViewRowAttrHintsImpl.
ATTRIBUTE DISPLAY HINT DISPLAY;

}

return super.getHint (locale, sHintName) ;

}

[350]

Chapter 8

private boolean isNormalUser () {
return CustomProfileChecker.getInstance() .isNormalUser;

}

Generate the appropriate view row class to return the custom attribute hints
implementation from the previous step (CustomRowAAttrHintsImpl):

//In the view row implementation class

public class DepartmentVORowImpl extends ViewRowImpl
//Other codes go here
/**
* Create a map to store attribute hints for this row.
* @param attrDef The attribute definition for which
* the hints need to be created.
* @return an instance ofViewRowAttrHintsImpl */
protected ViewRowAttrHintsImpl
createViewRowAttrHints (AttributeDefImpl attrDef) {
//Return custom row attribute hints implementation
return new CustomRowAAttrHintsImpl (attrDef, this);

}

The following ADF Faces tag snippet illustrates the usage of control hints in the Ul
This example hides the Manager1d field in the Ul if displayHint for the ManagerId
attribute is not equal to Display. At runtime, when the system evaluates the EL

- #{bindings.ManagerId.hints.displayHint}, the framework invokes the
underlying getHint () method on CustomRowAAttrHintsImpl to return the
desired value.

<af:inputText value="#{bindings.ManagerId.inputValue}"
label="#{bindings.ManagerId.hints.label}"
required="#{bindings.ManagerId.hints.mandatory}"
columns="#{bindings.ManagerId.hints.displayWidth}"
maximumLength="#{bindings.ManagerId.hints.precision}"
rendered="#{bindings.ManagerId.hints.displayHint eq
'Display’'}"
shortDesc="#{bindings.ManagerId.hints.tooltip}" id="it7">
<f:validator binding="#{bindings.ManagerId.validator}"/>
</af:inputText>

[351]

Building Data Bound Web User Interfaces

Summary

In this chapter we have explored data bound UI component features offered by the
ADF framework. The major objective of this chapter was to enable you to go beyond
the visual and declarative development and customize the default behaviour of the
framework components without breaking the contract set by the framework. We
have also covered many examples and API usages while discussing various data
bound UI components.

In the next chapter, we will see how to declaratively define a navigation model in a
fusion web application.

[352]

Controlling the Page
Navigation

Most web applications display some form of visual navigations and provide
navigation models to help users move around the pages. In this chapter you will
learn about similar offerings from the ADF Controller layer to navigate back and
forth between views in a Fusion web application. In addition to providing navigation
models for the web pages, the ADF Controller is also responsible for transaction
management, authorization, and managed bean lifecycle management. We will be
discussing basic navigation models provided by the ADF Controller layer in this
chapter. More advanced concepts will be covered in the next chapter. We will
discuss the following topics in this chapter:

* The navigation model in the JSF framework
* The navigation model in ADF

* The ingredients of an ADF task flow

* Building an unbounded task flow

Introduction

As you know ADF Faces is implemented on top of the JSF framework. In other
words, ADF Faces leveraged the extensibility options offered by JSF to add more
features, keeping the basic architecture in aligned with that of the JSF framework. A
key area where ADF Faces excels over other JSF based frameworks is the controller
layer. The JSF navigation controller provides a basic navigation model for a web
application and is very flexible by design. However it lacks certain functionalities
such as reuse of pages, hooks for placing page initialization logic, page fragmenting,
and modular development. The ADF Controller is designed to overcome these
drawbacks. Let's give a glance at the features offered by the JSF controller before
digging in to the details of the ADF Controller.

Controlling the Page Navigation

The navigation model in the JSF
framework

The JSF framework has a very flexible navigation model which decouples navigation
rules from the JSF page as well as from underlying business logic.

The JSF 2.0 navigation model supports two types of navigations:

* Rule based navigation

* Implicit navigation

Rule based navigation

The core JSF navigation model is built based on navigation rules which decide
the next page in the navigation flow in response to the outcome produced by

the actionable UI components. JSF uses a faces-config.xml file to store all the
navigation rules and managed beans used in the application. The following is an
example for navigation rules defined in faces-config.xml.

<navigation-rules>
<from-view-id>/department.jsf</from-view-1id>
<navigation-cases>
<from-outcome>viewEmployees</from-outcome>
<to-view-id>/employee.jsf</to-view-id>
</navigation-case>
</navigation-rule>

In this example, the framework will navigate to the user from department.jsf to
employee.jsf by clicking on any navigation Ul component whose action outcome is
set to viewEmployees in the JSF code. The following is an example for a navigation
UI component:

<h:commandButton value="View Employees"
action="viewEmployees" />

If your application is huge in size, the JSF framework allows you to split
faces-config.xml into multiple files which can be configured in the
web . xm1 file as follows:

<context-param>
<param-name>javax.faces.CONFIG_FILES</param-name>
<param-value>
WEB-INF/config/manage-beans.xml,
WEB-INF/config/navigation-rule.xml,
WEB-INF/config/config.xml
</param-value>
</context-param>

[354]

Chapter 9

If you are working on a Fusion web application, you will always use ADF specific
configuration files such as adfc-config.xml or task flow XML files for configuring
navigation rules as well as for keeping managed bean definitions. By using
adfc-config.xml or task flow XML for defining navigation rules, you can

leverage the extra features offered by the ADF Faces navigation model. Note that
faces-config.xml is still required to run an ADF Faces application. A Fusion web
application may use faces-config.xml to store metadata definition for validation
rules, converters, lifecycle phase listeners, custom component definitions, render kits,
global resource bundles, and application level factory extensions.

Implicit navigation

Before winding up our discussion on the JSF navigation model, let us take a look at
the new implicit navigation feature offered by JSF 2.0. The implicit navigation feature
eliminates the need for navigation-rule definitions in the faces-config.xml file.
This makes your life easier when you build demo applications or proof of concepts.

How does implicit navigation work?

When a user performs some action on the page, JSF posts a form back to the server.
While processing the postback request, the framework will check all navigation cases
for finding any matching outcome produced by the navigation component. If no
matching navigation case is found, then the navigation handler checks to see if the
action outcome corresponds to a view ID in the application. If a view matching the
action outcome is found, an implicit navigation to the matching view occurs.

For example, consider the following JSF code:

<af:button text="View Employees" id="bl" action="empView"/>

When a user clicks on the View Employees button, the framework will check

for any navigation rule definition for the action outcome empview. If there is no
matching navigation rule found, then the framework will check for a page within the
application whose extension is the same as the current page and whose filename is
the same as the action string set for the component. If such a view exits, then implicit
navigation will be triggered resulting in navigation to empView. jsf.

Implicit navigation is supported in ADF 11¢ Release 2 onwards.

[355]

Controlling the Page Navigation

The navigation model in ADF

One of the biggest challenges faced by web developers is how to deal with complex
navigation requirements of huge enterprise applications. Though the control

flow features offered by JSF meet the basic requirements of most of the business
applications, developers may need to put extra effort in when it comes to really
complex use cases. For example, consider the following navigation requirements
which you might have experienced while working on rich enterprise applications:

* Implementing page hierarchies, only for top level pages, of an application
should be directly accessible through a URL link

* Enforcing sequential processing for certain sets of pages to complete the
transaction in a predefined order

* Reusing control flow cases and associated pages in an application

You may end up writing down custom logic to achieve these functionalities with the
core JSF framework. The good news is that the Oracle ADF framework has out of the
box support for all such navigation requirements. ADF uses task flows to provide the
basic infrastructure for controlling the navigation cases in a Fusion web application.
There are two types of task flows in ADF:

* Unbounded Task Flow: Unbounded task flows are designed to handle
navigation between pages which do not necessarily follow any specific
entry point or exit point. For example, consider the pages linked through the
toolbar menu in an application. An end user can select any menu option that
he or she likes, or the person can even type the URL directly in the browser
for viewing the page and can exit from the page or switch to a new page at
any point in time. The navigation model for such pages (unbounded view)
is defined using unbounded task flow.

Unbounded task flow defines navigation for unbounded views in a Fusion
web application.

* Bounded Task Flow: The bounded task flow is primarily designed to
implement reusable navigation cases with definite entry and exit points.
A bounded task flow contains its own set of control flow rules, activities,
and managed beans. The following are the unique features of a bounded
task flow:

i. They can have only one entry point for entering into the task
flow. However, multiple exit points are supported.

ii. They can take parameters from the caller before starting the
execution as well as the return value to the caller after execution.

[356]

Chapter 9

iii. They can be built either using page fragments or complete
JSF pages.

iv. They support transaction aware control flow cases.

The ingredients of an ADF task flow

The ADF task flow consists of three major elements: task flow configuration files,
task flow activities, and managed bean definitions. The following section discusses
each item in detail.

Task flow configuration files

When you build an ADF task flow, JDeveloper IDE generates a task flow definition
file that will act as a registry for keeping task flow related artefacts. These files are
discussed under this section.

adfc-config.xml: This file stores the metadata definition for the default
unbounded task flow in a Fusion web application. JDeveloper by default
creates this file in the public_html\WEB- INF folder of the view controller
project when you generate a Fusion Web application.

The adfc-config.xml file may contain unbounded task flow activities,
control flow rules for pages, and managed beans interacting to allow users
to finish specific business functionalities. The IDE will generate a brand new
adfc-configN.xml file (where N is a numeric value) for new unbounded
task flows created in the view controller project. At runtime, the framework
will use the union of all the adf-config.xml files to decide the navigation
case for page and also for identifying the bean definitions when referring to
them in the view layer using EL expressions.

When you ship a view controller project that contains unbounded task

flow as an ADF library, the packaging tool will move the task flow definition
XML file to the META- INF folder in the ADF Library JAR. In other words,

if the project that contains unbounded task flow is shipped as an ADF
library, the META- INF folder in the ADF Library JAR will be holding the

task flow definition XML file.

Bounded task flow definition XML: This file stores the metadata definition
for a bounded task flow. You can specify the task flow definition XML
filename and location when you generate the task flow. The task flow XML
files are stored in the WeB- INF folder of the view controller project where
you created the task flow. If the project that contains the ADF task flow is
shipped as an ADF library, the META- INF folder in the ADF Library JAR
will be holding the task flow definition XML file.

[357]

Controlling the Page Navigation

The bounded task flow XML file may contain the bounded task flow
activities, control flow rules for pages or page fragments, and managed
bean definitions used in the corresponding task flow.

ADF managed beans

Managed beans are Java classes used for implementing business logic or data model
for your JSF page. As the name suggests, its lifecycle is managed by the underlying
JSF framework. Managed beans are defined in task flow configuration files such as
adfc-config.xml or task flow definition XML file. While defining a managed bean,
you specify the bean name, the fully packaged Java class name, and scope of the
bean. An example is as follows:

<managed-bean id="_1">
<managed-bean-name>empBean</managed-bean-name>
<managed-bean-class>
com.packtpub.adfguide.ch8.view.EmployeeBean
</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>
</managed-bean>

The managed bean can be referred from a JSF page using EL expression. In the
following example, the EL expression #{empBean. firstName} refers to the
firstName property in the empBean instance.

<<af:inputText id="itl" value="#{empBean.firstName}"/>

JSF 2.0 introduced annotations for registering a POJO class as a managed

bean and also enabled Contexts and Dependency Injection (CDI) for
M managing runtime dependencies in a managed bean. As the Oracle

ADF Controller layer does not have any extended implementations on

these areas, we are not covering these topics in this book. Oracle ADF

Controller (task flows) will continue to use the registration of beans in

configuration files.

The scope specified for a managed bean decides how long it should stay in memory.
The following table explains memory scopes available for managed beans in an
ADF application:

[358]

Chapter 9

Scope

Description

ADF Specific Scope
(Yes/No)

backingBean

request

view

The backingBean scope exists for the duration of
a request. The backingBean scope is limited to
the containing task flow or UI component. If you
have multiple instances of the same task flow or
declarative components in a page, each instance
will get its own backingBean scope memory area
and they are not visible to each other.

You may use the backingBean scope to store
managed beans or variables for the duration

of a request. The backingBean scoped memory
variables are accessible only within the containing
bounded task flow or within the owning
component.

The request scope exists for the duration of a
request. Unlike the backingBean scope, the request
scope is shared across task flows and components
in a page.

You may use the request scope to store managed
beans or variables for the duration of a request.

If the page that uses a request scoped variable
contain an embedded task flow which may
accidentally use the same name for request scoped
variables, then you may need to consider using
the backingBean scope for such cases in order to
prevent the accidental overriding of values.

The view scope is longer than the request scope,
and shorter than the session scope. View-scoped
memory variables or managed beans exist until
the user finishes interaction with the current view.

Note that JSF 2.0 introduced a View scope in the
core JSF framework. ADF also provides a scope
with the same name. When you use a view scope
in a Fusion web application, under the covers it
uses the view scope implementation provided
by ADF. The difference between the two view
scopes is that JSF 2.0 stores information in a map
on UIViewRoot. This will be emptied during
page refresh or a redirect to the same view. The
ADF Controller view scope is refreshed only
when users navigate to a new view (when the
view ID changes) Thus, view scoped variables
and managed beans in ADF survive refreshes and
redirect to the same view.

Yes

Yes (JSF also has
similar scope)

[359]

Controlling the Page Navigation

Scope Description ADF Specific Scope
(Yes/No)
pageFlow The pageFlow scope exists across activities for the Yes

duration of a task flow. Each task flow has its own
pageFlow scoped memory area.

You may use the pageFlow scope to store
managed beans or variables that need to survive
the transition from one page to another.

session The session scope exists for the duration of auser No
session (HttpSession). It starts when the user
starts accessing the application and ends when
the session times out, or when the application
invalidates the session object.
You may use the session scope to store the user's
session specific data, such as the logged-in user
profile.

application The application scope exists till the application No
ends. Application scoped memory area is shared
across user session and requests.
This scope is used for storing application specific
configurations.

Each bounded task flow in an ADF Fusion web application has
M its own backingBean, view, and pageFlow scoped memory areas.
Q However, request, flash, session, and application scoped memory
areas are shared across all bounded and unbounded task flows in a
Fusion web application.

Along with the view scope, JSF 2.0 also introduced another scope known as the
flash scope. The f1lash scope is longer than the request scope, and shorter than the
session scope. The £1ash scope exists across a single view transition and survives
redirects. It is automatically removed from memory before transitioning to yet
another view. There is no declarative configuration support for marking a bean flash
scoped. The following code snippet illustrates how you can store a managed bean in
a flash scope. Typically, you may do this from a method action, before navigating to
the destination view which requires accessing the same managed bean instance from
the source view.

//In managed bean class
public void storeInFashScope(
Flash flash=FacesContext.getCurrentInstance().
getExternalContext () .getFlash() ;
flash.put ("myBean", this);

[360]

Chapter 9

A flash scoped bean is accessible from EL, using the £1ash prefix as shown in the
following example: #{flash.myBean.name}.

What you need to know while using managed beans
in JSF code?

The following are important points you may need to keep in mind when you start
using a managed bean for the first time in your Fusion web application:

* ADF inherits the request, £1ash, session, and application scopes from the
underlying JSF stack. backingBean, view, and pageFlow are ADF specific
scopes. If you define a managed bean in a view scope in an ADF application,
under the covers it uses the view scope provided by ADF and not the one
provided by the core JSF 2.0 stack.

e If a view activity defined in the task flow uses ADF specific scoped beans,
then the corresponding task flow should hold the bean definitions. In other
words, defining an ADF scoped managed bean in an unbounded task flow is
not enough to use them from a bounded task flow. However, this restriction
is not applicable for managed beans stored in memory scopes provided by
JSF such as the request, session, £1ash, and application scopes.

* Prefix all ADF scoped beans with respective scope names while using them
in EL expressions. For example, a managed bean stored in the pageFlow
scope should be prefixed with pageFlowScope when referred in the EL
expression. An example is as follows:

<af:inputText id="itl" value="#{pageFlowScope.empBean.
firstName}"/>

Similarly, backingBean scoped beans are prefixed with backingBeanScope
as shown in the following example: # {backingBeanScope . empBean.
firstName}. View scoped beans are prefixed with viewScope as

shown here: #{viewScope.empBean.firstName}.

Note that a managed bean with request, session or application scopes do not
require any prefixing.

Task flow activities

An activity represents a unit of the task performed when the task flow runs. The
task flow activity list includes view, method call, control flow router, task flow
call, parent action, and task flow return. Note that the task flow return and parent
action activities are specific to bounded task flows alone, and are not applicable for
unbounded task flows. The following sections discuss task flow activities in detail.

[361]

Controlling the Page Navigation

View activity

The view activity represents a complete JSF page or page fragment that forms a unit
of the task in the task flow. Page fragments are useful when you build a bounded
task flow which requires to be embedded in a parent JSF page as a region.

To add a view activity, perform the following steps:

1. Open the desired task flow in the diagram editor.

2. Drop a view activity from the ADF Task Flow component palette onto the
task flow diagram editor.

3. Double-click on the view to generate a physical file for the view. In the Create
JSF Page dialog window, enter the filename, directory, and document type
(Facelet or JSP XML) and click on OK to create the file.

The following is an example for a view activity in a task flow XML file:

<!—View Definitions -->

<view id="deptView">
<page>/deptView.jsf</page>

</view>

<view id="empView">

<page>/empView.jsf</page>

</views>
<!—Control flow cases using view ids -->
<control-flow-rule id="_16">

<from-activity-id>deptView</from-activity-id>
<control-flow-case id="_17">
<from-outcome>employees</from-outcome>
<to-activity-idsempView</to-activity-id>
</control-flow-case>
</control-flow-rule>

You will notice that the task flow metadata definition keeps view IDs independent of
the physical files. This gives more flexibility when you define control flow rules and
improves reusability as well.

[362]

Chapter 9

What document type should you choose while creating a
JSF page?

ADF Faces allows you to build a view activity using either Facelet or JSP XML as

a document type. You may find the same set of design time features for both these
types of pages. However, they differ considerably when it comes to the rendering
of views at runtime. The JSP XML uses the JSP engine at runtime to render the page
which is not well tuned to accommodate the JSF lifecycle stages; whereas, Facelet is
primarily built using JSF in mind and fits well with the lifecycle stages of the page.
If you are building new Fusion web applications, it is strongly recommended you
choose Facelet as a document type.

Bookmarking view activity

When a user navigates between views in a Fusion web application, by default, the
browser URL may not reflect the actual view you are currently watching. This is
because the underlying navigation handler uses a forward dispatching request on
the JSF Controller servlet. Though this has certain performance benefits, the user
may not be able to bookmark these views as the browser URL does not reflect

the actual resource.

The ADF framework allows you to bookmark desired views in an unbounded task
flow by setting the bookmark property to true. Note this feature is enabled only for
views from unbounded task flows.

To create a bookmarkable view activity, perform the following steps:

1. Select the view activity in the unbounded task flow. In the property
inspector, expand the Bookmark section and select true.

This basic configuration is enough to enable bookmarking for a view.
However, in real life scenarios you may want to restore the original state of
the view even when it's requested, through bookmark URLs. This may call
for the invocation of a managed bean method when the page loads as well as
passing extra parameters through bookmarked URL. The ADF bookmarking
feature has support for both these cases which is explained in the next step.

2. To add a custom initialization method for a bookmarked activity, in the
property inspector, expand the Bookmark section and specify an EL
expression referring to a managed bean method as a value for the
Method field.

[363]

Controlling the Page Navigation

3. Toadd bookmark URL parameters, in the property inspector, click on the
green plus icon under the Bookmark section. Specify the following for the
newly added parameter:

i. Name: This represents the name of the parameter that may
appear in the bookmark URL.

ii. Value: This is value for the parameter that may appear in the
bookmark URL.

iii. Converter: The parameter value should always be a string value.
If the parameter value is an EL expression which evaluates to
an object type, you have to tell the framework how to convert
the object to a string literal. This is done through a customized
converter class. To implement this custom converter, define the
managed bean that implements the oracle.adf.controller.
UrlParameterConverter interface and refer it through the
EL expression as a value for the converter. If no converter is
specified, the system uses the default, oracle.adf.controller.
DefaultUrlParameterConverter.

-| Bookmark

o Bookmark: |true =

@ Method: |:{Em|3|01,reeBean.initEmpIDy'ee} | v
Bookmark URL Parameters g X
Mame * Value * Converter -
deptld #{pageFlowScope, deptld}

The following is an example for the custom UrlpParameterConverter class.

This example converts the parameter value from Integer to string when the
bookmarkable URL is generated, and from String to Integer (before pushing the
parameter values to the model) when the bookmarked URL is accessed by a user.

public class IntegerUrlParameterConverter implements
oracle.adf.controller.UrlParameterConverter

/**

* @param value the value to be converted

* into an object representation.

* @return the object representation of the value.

*/

[364]

Chapter 9

@Override
public Object getAsObject (String value)
// If the specified value is null or
// zero-length, return null
if (value == null || value.trim().length() < 1) {
return null;
}
try {
return (Integer.valueOf (value.trim())) ;
} catch (Exception e) {
throw new ConverterException (e) ;

/**
* @param value the object to be converted into
* a string representation.
* @return the string representation of the value.
*/
@Override
public String getAsString(Object value)
// If the specified value is null, return a
// empty String

if (value == null) {
return "";

!

try {

return (Integer.toString(((Number)value) .
intvalue())) ;
} catch (Exception e) {
throw new ConverterException (e) ;

Redirect URL

As discussed in the previous section, the ADF Controller by default issues a forward
request to navigate to a new view. However, you can make the ADF Controller issue
a redirect request for a view activity by setting the Redirect property to true for the
desired view activity. In this case, the ADF Controller issues a redirect dispatching
request for the resource and the URL displayed in the browser will reflect the actual
page that the user is working on.

[365]

Controlling the Page Navigation

To enable a redirect dispatch mode for a view activity, select the desired view in
the task flow diagram and then select True in the Redirect drop-down list using the
property inspector.

Note that Bookmark and Redirect are mutually exclusive properties. If you are
really looking for a fully-fledged bookmarking feature, use the bookmarking itself
that we discussed in the last section. Redirect is even enabled for abounded task
flow as well.

URL view activity

The URL view activity represents URL locatable resources such as bounded
task flows as a whole, view activities in an unbounded task flow and external
website addresses.

To add a view activity, open the desired task flow in the diagram editor and then
drop a URL view activity from the ADF Task flow component palette on to the task
flow diagram editor. In the property inspector, specify the URL for the activity either
using a static URL string or an EL expression.

The following is an example for a static URL view activity that points to an
external website:

<url-view id="google">
<urlshttp://www.google.com</url>

</url-view>

The following is example for programmatically specifying a URL for a view activity
in the unbounded task flow:

<url-view id="EmpURLView">
<url>#{DeptBean.empViewURL}</urls>

</url-views>
The DeptBean code that returns empviewURL is as follows:

//In managed bean implementation class

public String getEmpViewURL ()
String viewId = "empView";

// Generate a URL for a view activity in the

// unbounded task flow.
ControllerContext controllerCtx = ControllerContext.getInstance() ;
return controllerCtx.getGlobalViewActivityURL (viewId) ;

}

[366]

Chapter 9

Any time an application constructs a URL pointing to a view activity, the URL
must be encoded using either of the following methods from the oracle.adf.
controller.ControllerContext class:

* getGlobalViewActivityURL(): This method generates a URL for a view
activity in the unbounded task flow

* getLocalViewActivityURL(): This method generates a URL for a view
activity in the bounded task flow

The usage of methods such as getGlobalViewAtivityURL() or
getLocalViewActivityURL () for encoding the URL ensures that the newly
constructed URL holds all state tracking parameters used by the framework. When
a client requests a view, the ADF Controller will create a data control frame to serve
the request and identifies the correct application module to use for a request via
the state tracking parameters. If the request does not carry the right state tracking
parameters, the framework will end up creating new application module instances
and applications may lose their previous states. You can use the previously
mentioned encoding APIs to identify the correct URL from the view ID even when
you call the redirect () method on the javax.faces.context.ExternalContext
instance in your code. An example is as follows:

//In managed bean class
public void redirectToEmpView () {

String viewId = "empView";
ControllerContext controllerCtx =
ControllerContext.getInstance () ;
//Gets the URL from view id
String activityURL =
controllerCtx.getGlobalViewActivityURL (viewId) ;
try {
extContext.redirect (activityURL) ;
} catch (IOException e) {
//Redirection failed
e.printStackTrace () ;

[367]

Controlling the Page Navigation

Specifying parameters for a URL view activity

If the target application referenced through the URL view activity takes input
parameters, then the parameter values can be set in the following two ways:

* Specify parameters along with the URL if they are static literals

* If parameters are evaluated at runtime, then use the url-parameter options
available with the URL view element in the task flow metadata definition

What happens when runtime invokes a URL view activity
from a bounded task flow?

When runtime invokes a URL activity from a bounded task flow, before navigating
to a new URL view, the framework abandons the ongoing task flow process and
clears the memory scopes variables for the task flow. In other words, invoking a
URL view activity is the same as exiting from a current task flow and invoking the
target view.

Method call activity

Method call activity allows a task flow to call custom or built-in methods during
view transitions. This is useful to execute some business logic before page renders.
Method call activity represents a method defined in a managed bean, or a method
exposed in data control which is referred through ADF binding.

Using a managed bean method in method call activity

To add a method defined in a managed bean as a method call activity, perform the
following steps:

1. Drag Method Call Activity from the ADF Task Flow component panel and
drop it in the task flow diagram. In the property inspector, specify the EL
expression wiring a managed bean method for the method activity. The next
steps detail the editor support for visually building the EL expression by
picking up the existing bean method.

2. To enter the EL expression visually using the editor, click on the Property
Menu option next to the Method field in the property inspector.

3. Inthe Method Expression Builder dialog, expand the ADF Managed Beans
section and select the desired method displayed under the bean definitions in
the tree. When you click on OK, IDE copies the EL expression to the Method
field in the property inspector window.

[368]

Chapter 9

4. You should specify the outcome for the method call activity using the
following options:

i. Fixed Outcome: The method activity returns a fixed single
outcome on successful completion. Use this option to specify a
hardcoded literal value if the method does not return any value.

ii. tostring(): If specified as true, the outcome is based on calling the
toString () method on the Java object returned by the method.

5. To specify parameters for the method, expand the Parameters section and
enter the parameter type and value as they appear in the method signature.
If the method returns any value which is required for further processing,
then in the return-value field, enter an EL expression indicating where to
store the method return value.

The following example represents a method call activity for the initDept ()
method defined in DeptBean. The toString() selection to true instructs the
framework to use the returned value of the method as the outcome for this
activity. The input parameter to this method is specified using the EL expression
#{pageFlowScope.departmentId} and the retuned value from the method is stored
in page flow scoped variable, #{pageFlowScope.initDeptReturn}.

method-call - initDept - Properties
Q Find @

- General

o Activity ID *: [nitDept |

B Method *: |={DeptBean.initDepfl.-'ieu\'} | -
Outcome *
Fixed Qutcome: | | -
9 toString): [true .

+ Description

-] Parameters

Class Value = -
java.lang.Integer #{pageFlowScope .departmentld}
BReturn Value: |={pageFIowScope.initl:)eptReb.lrn} | i

+] Customization

Using data control operation in method call activity

To add method call activity for a method exposed in the Data Controls panel,
drag the desired method from the panel and drop it on to the task flow diagram.
If the method takes any parameter, then IDE will allow you to specify the method
parameter values through the display of the Edit Action Binding dialog window.

[369]

Controlling the Page Navigation

When you drop a method from the Data Controls panel on a page, IDE generates
a page definition file for holding binding metadata and also updates the
DataBindings. cpx file with the page mapping and page definition usage entries.

Router activity

A router activity selects one of many possible activities to execute. This takes an EL
expression as selection criteria and defines possible matching navigation cases. Based
on the outcome of the evaluation of the EL expression, the framework chooses the
matching navigation case and continues the execution with the target activity.

To add a router activity, drag-and-drop the router activity from the ADF Task Flow
component palette on to the task flow diagram editor. In the property inspector,
specify values for the following configuration items:

* Default Outcome: This is the default outcome for the router activity which
will be used when no control flow cases evaluate to true.
* Navigation Cases: The following are the navigation cases.
i. Expression: This specifies an EL expression that evaluates to true
or false at runtime.
ii. Outcome: This specifies the outcome for the router activity if the

expression evaluates to true.

The following example illustrates the usage of router activity in defining control flow
cases for a task flow:

‘\)

employees ‘ ‘ Q>
‘;| >

L‘J| hasEmponees’|

deptiiew hasEmployeesForDepartment empDisplaySwitch

viewEmployees
createEmployees

‘ &
=

CreatelnsertEmployees

empView

Createlnsert

™
= |

createEmployee

[370]

Chapter 9

Upon selection of the view employees option from a department page, the
application takes the user to create an employee page if there are no employees for
the department. If the selected department row has employees, then the application
will take the user to the employee listing page. This conditional navigation is
implemented through router activity and the details of the implementation are

as follows.

When the user navigates from the department view, the router

activity (empDisplaySwitch) will check the value returned by the
hasEmployeesForDepartment method call, and if the returned value evaluates to
true, the router produces the outcome as viewEmployees. In other cases, the router
activity will produce the outcome as createEmployees. The framework will take an
appropriate navigation path based

on the outcome produced by the router activity.

The detailed configuration for empDisplaySwitch router activity used in this
example is displayed in the following screenshot. The router produces different
outcomes based on the value of the EL expression #{requestScope.hasEmployees}.
Note that the EL expression #{requestScope.hasEmployees} used in the router
holds the return value from the hasEmployeesForDepartment method call

which is executed before the router activity.

- General

o Activity ID = |empDispIa\,r5witch |

o Default Outcome *: |viewEmponees |=|
Cases 4 }@
Expression * Qutcome = -
#{requestScope.hasEmployees} viewEmployees

#{not requestScope.hasEmployees} createEmployees

+| Description

+| Customization

Save point restore activity

The save point feature provided by ADF Controller can be used for capturing a
snapshot of the application state at a specific point in time. The Save Point Restore
activity declaratively enables the application to restore whatever was captured when
the save point was originally created. This is typically used for implementing the
undo feature in task flows.

[371]

Controlling the Page Navigation

Where are ADF Controller save points created?

Save points are configured to save database tables by default. The default expiry
time for a save point is 86400 seconds (24 hours). The ADF framework uses the
ORADFCSAVPT table to store the save points. The framework will try to create this
table if it is missing in the database when it is accessed for the first time. However
the database user should have necessary privileges to create a table. Alternatively,
you can define a separate database to hold this table, and configure the application to
use that database for storing save points. The script for creating ORADFCSAVPT is
packaged in the following folder of your JDeveloper installation:

<JDeveloperHome>/oracle common/common/adfc create save point table.
sql

To configure the JDBC data source for storing save points, select adf-config.

xml in ADF META-INF folder in the Application Resources panel and open it in the
overview editor. In the overview editor, select the Controller tab and expand the
Savepoints section. Specify the JDBC data source for the database which contains
the ORADFCSAVPT table. The framework will create this table during the first access if
it is missing from the database. In such cases, make sure that the username specified
while configuring the data source has sufficient privileges for database table creation.

Using save points in a task flow

To declaratively define a save point in a task flow, drop a method call activity on to
the task flow editor diagram and in the property inspector specify the following EL
expression as a method to be invoked: #{controllerContext.savePointManager.
createSavePoint}. This expression is equivalent to calling the createsavepoint ()
method on savePointManager as shown in the following code snippet:

//In managed bean class

ControllerContext ccntxt = ControllerContext.getInstance() ;

SavePointManager savePointManager =
centxt.getSavePointManager () ;

String savePointId = savePointManager.createSavePoint () ;

[372]

Chapter 9

When this method is called at runtime, the framework creates a save point

and returns the save point ID to the caller. Store this ID to a page flow scopes
variable so that it can be used later to restore the save point. For example, the
following screenshot displays the property inspector for a method call activity
that declaratively creates a save point at runtime and stores the save point ID to

#{pageFlowScope . spEmpBeforeEdit }.

method-call - createSP - Properties
s al @
- General
o Activity ID = |createsP |
EMethod *: |#{conh’ollerConb&xt.savePoinH‘danager.u'eateSavePoint} | o
Cutcome *
@ Fixed Outcome: FosTSaVEPoint |V| v
toString(): | <default> (false) '| ~
+ Description
-1 Parameters
ar X
Class Value * -
BReturn Value: |#{pageFIowScope.spEmpBefareEdit} | v
+ Customization

To restore the save point declaratively, drop the Save Point Restore activity on to
task flow diagram editor. Specify the save point ID using the EL expression that
points to a previously created save point ID: #{pageFlowScope . spEmpBeforeEdit }.
The save point restore activity is typically used for implementing the undo feature

when the user clicks on the Cancel button.

a1

While using the declarative save point feature in a task flow, you must
‘Q create the save points before entering into the task flow for which you

want to restore the state, and conditionally restore the save point from the

parent on exit of the task flow.

[373]

Controlling the Page Navigation

The following example illustrates the usage of save point restores activity in a
task flow.

department hastEmployeesForDepartment createSavePaoint

A

i

hastEmployees '|

>
employees |
Py | &)

‘ 5
=)
2

postSavePoint

¢

emplisplaySwitch

cancel
createEmployee

editEmployee

B

—
Qe

savePointRestore editEmployee createEmployee

This example task flow starts with the department page that displays the department
details in an ADF Form with navigation buttons. When a user clicks a command
button or any other navigation component with an action outcome set as employees,

the ADF runtime performs the following tasks:

1. Executes a method activity (hasEmployeesForDepartment) to see whether
the selected department has any employees, and saves the returned value to

#{requestScope.hasEmployees}.

2. Creates a save point for the current state and stores the save point ID to

#{pageFlowScope. spEmpBeforeEdit}. Later in the navigation, we will use
this save point to restore the state when a child task flow wants to cancel

the operation.

3. The empDisplaySwitch router activity navigates to the editEmployee task
flow if the EL expression, #{requestScope.hasEmployees}, evaluates to
true (this implies that the department has employees). Otherwise it navigates

to the createEmployee task flow.

4. The save point restore activity in the parent task flow will be invoked
when any of the child task flow cancels the data update and returns
a cancel outcome to the parent.

[374]

Chapter 9

A working example illustrating the usage of save point restore activity
\ can be found in the example code that we mentioned at the beginning
~ of this book, in the Preface section. To access the example code, open the
Q ADFDevGuideCh9 workspace in JDeveloper and look for savepoint -
sample-task-flow-definition.xml in the ViewController
project.

What happens when you create an ADF Controller save
point?
Save point captures the following state information for an application:

* User Interface state: This includes the selection state of selection-enabled Ul
components and user customizations such as table column sort state.

* Managed beans: This specifies the state of underlying managed beans stored
in session, view, and pageflow memory scopes. Managed beans should be
serializable to save their state.

* Navigation state: This includes task flow call stack tracks to restore the path
to reach the current page.

* ADF model state: This specifies the state of underlying business
components which includes the modified state of entity objects, conditions
used for querying the data source, row currency for the row sets, and
passivation-enabled transient attribute values of entity and view objects.

When the ADF Controller generates a snapshot, behind the scenes it invokes the
ADF model (via the oracle.adf.model.DataControlFrame API) to acquire the
underlying ADF model snapshot (which includes the current state of business
components). The ADF model uses a similar mechanism as what is used for a
model failover or for an application module recycling, to create the model state
snapshot and store that state in the ps_TxN table. It returns the collection of the
PS_TXN snapshot handles to the ADF Controller which then stores those handles,
along with the view and controller states in the ORAADFSAVPT table.

Implicit save points
ADF Controller also has support for enabling implicit save points. This helps to
automatically save the current state of the bounded task flow in two cases:

* When an Http session is invalidated

¢ When a browser window is closed

[375]

Controlling the Page Navigation

To enable implicit save points for the application, open adf-config.xml which

is located in the <application_root>\.adf\META-INF directory in the overview
editor and select the Controller page. Select the Enable Implicit Savepoint checkbox
option displayed under the Savepoints section in order to turn on the implicit save
point for the application.

When implicit save points are enabled, the framework will create in-memory save
points representing the state of the application at the end of each request for task
flows that are marked as critical. Later when a session is invalidated or a browser is
closed, the in-memory state is pushed to the database table. The implicit save points
are not restored automatically; you may need to do that programmatically.

Task flow call activity

The task flow call activity can be used to invoke a bounded task flow from

a bounded or unbounded task flow. If the called (bounded) task flow takes
parameters, task flow call activity will allow you to specify values for the parameters.
Parameter values can be set either as a literal or an EL expression. If the called task
flow returns a value to the caller on exit, you can specify memory scoped variables

to store the return value using an EL expression for further processing.

Task flow return activity

The task flow return activity causes a bounded task flow to finish the execution and
to return the control back to the caller. The following are the important properties of
task flow return activity:

* Outcome: This specifies the returned outcome to the caller when the
bounded task flow exits.

* Reentry: This property decides whether re-entry is allowed for any view
activity in the task flow by clicking on the browser back button. The possible
values for this property are: reentry-allowed, reentry-not-allowed, and
not outcome dependent. The first two properties are self explanatory. and
these properties are applicable for a task flow return activity only if the task
flow level re-entry property is set as reentry-outcome-dependent. The Task
Flow Reentry properties for a bounded task flow are explained in Chapter 10,
Taking a Closer Look at the Bounded Task Flow under the topic Properties of a
bounded task flow.

[376]

Chapter 9

* End Transaction: This controls the scope of the transaction for the task
flow. The possible values are commit and rollback; you can either commit
an ongoing transaction or roll back the pending changes. This property is
applicable if the transaction property of task flow is marked as Always

Begin New Transaction or Use Existing Transaction If Possible.

are by default enabled only for ADF Business Component based data

the release notes, go to http: //www.oracle.com/technetwork/
developer-tools/jdev/documentation/index.html and
choose the Release Notes link displayed below the version that you
are working on.

"Q release notes to see whether this is supported out of the box. To access

Parent action

The declarative transactions settings for task flows with multiple views

model. If you are using EJB Bean or Java Bean data control, refer to the

The parent action activity is used to trigger navigation in the immediate parent or

root page in the page tree from a bounded task flow running inside a region.

To add a parent action, open the bounded task flow built with page fragments in the

diagram editor. Drag-and-drop the parent action activity from the ADF Task

Flow

component palette to the task flow diagram editor. Enter the following properties in

the property inspector:

* Parent Outcome: Parent outcome triggers the matching navigation cases
defined in an immediate parent task flow. This can be specified as an EL
expression or a literal value which will be used by the ADF navigation

handler to decide the next view for the parent page.

* Root Outcome: Root outcome triggers matching navigation cases defined
in the root task flow. Root outcome can be specified as an EL expression or
a literal value which will be used to decide the next view for the root page.

Parent and root outcomes are mutually exclusive.

* Outcome: Outcome specifies the navigation case for the current view

only if

neither the parent view activity nor the root page navigates as a result of
the parent-outcome or root-outcome sent by the parent action activity.

[377]

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

Controlling the Page Navigation

To learn more about control flow cases and wildcard control flow rules,
refer to the topic Getting Started with ADF Task Flows in Oracle Fusion

N Middleware Fusion Developer's Guide for Oracle Application Development

~ Framework. To access the documentation go to http://www.oracle.

Q com/technetwork/developer-tools/jdev/documentation/
index.html and navigate to Oracle JDeveloper and ADF
Documentation Library | Fusion Developer's Guide. Use the Search
option to find specific topics.

Building an unbounded task flow

When you create an application choosing the Fusion web application (ADF)
template, JDeveloper generates basic view and model project structures with all the
required metadata files for building a fully-fledged ADF web application. The view
controller project contains an adfc-config.xml file to hold all unbounded view
definitions, navigation rules, and managed bean definitions for the web project.
This may be enough to meet the requirements of a simple application with a limited
number of pages. What if your application grows and you have to deal with more
number of pages and navigation rules? A quite obvious solution for such cases is

to split the view controller project into multiple projects and use multiple task flow
configuration files to hold the controller metadata definitions, and assemble all these
pieces while generating the final deployable artefacts for the application. The ADF
framework enables modular web development through bounded and unbounded
task flows. Task flows provide a modular and transaction-aware implementation to
control the page flows in an application.

In this section, you will learn to build an unbounded task flow that decides the
control flow for the top level pages in an application.

To define an unbounded task flow, perform the following steps:

1. Right-click on the view controller project in the application panel, select
New | ADF Task Flow in the context menu.

2. In the Create Task Flow dialog window, enter the filename and directory
for the task flow. As we are building an unbounded task flow, uncheck the
Create as Bounded Task Flow checkbox and click on OK to generate the task
flow definition file.

3. Next is to define the activities and control flow cases for the task flow.
You can drag-and-drop the task flow activities from the ADF Task Flow
component palette and draw navigation between them.

[378]

Chapter 9

4. To begin with, let us define a view activity which represents a page in the
application. Drop the view activity from the component palette onto the task
flow diagram. Use the property inspector to override the default properties
for each activity. Note that when you drop the view activity on to the task
flow, IDE will not generate a physical file for the same by default. To define a
physical file for the view, double-click on the view activity and then create a
JSF page. You can continue these steps and generate more view activities as
per the business requirement.

5. Once you have generated all the view activities for the task flow, next is
to define the control flow case between them. To define the control flow
between two view activities, select the source view activity in the task flow
diagram editor and drop Control Flow Case from the component palette
connecting the source and destination activities. Specify From Outcome for
the control flow in the property inspector window for enabling action-based
navigation.

The following example illustrates an unbounded task flow with department and
employee view activities:

‘ viewEmployees

department employee

-
’|

<control-flow-rule id="__1">
<from-activity-ids>department</from-activity-ids>
<control-flow-case id="__ 2">
<from-outcome>viewEmployees</from-outcome>
<to-activity-idsemployee</to-activity-id>
</control-flow-case>
</control-flow-rule>

In the previous example, the department view implemented the control flow rule
defined to the employee view for the outcome viewEmployees. The outcome can be
produced by any actionable components such as af :button or af : 1ink present in
department view. For example, if you want to trigger navigation to the employees
page when the user clicks on the Display Employee button in the department page,
you simply need to define a button with action = "viewEmployees as shown in the
following code snippet:

<af:button text="Display Employees" id="bl" action="viewEmployees"/>

[379]

Controlling the Page Navigation

Using a managed bean to return a dynamic
outcome for a navigation component

The framework also allows you to execute some business logic for deciding the
outcome using action methods defined in managed beans. An action method should
return either a String or Object with the tostring () implementation. To use the
outcome returned by a method defined in a bean, you must refer to the method
using an EL expression for the action attribute. An example is as follows:

<af:button text="Display Employees" id="bl" action="#{deptBean.
handleViewAction}"/>

This example does not hardcode the action outcome, rather it uses the
handleViewAction () method to return a String value which will be
used as outcome for the action.

Conditionally executing a control flow case

If you are working on Oracle [Developer 11g Release 2 or higher versions, you can
specify the EL expression as a guard condition for control flow execution.

To do this, select the control flow case in the task flow diagram, expand the Behavior
section in the property inspector and specify the EL expression that evaluates to true
or false, as a value for the 1f field.

At runtime, before navigating to the target activity, the framework will read the EL
expression that is set as a guard condition, and if the expression evaluates to true,
navigation will continue to the target activity.

Improving the readability of control flow
cases

If you have control flow cases defined from multiple source views to a single
destination view, you can make it more readable using the wildcard control
flow rule (represented by the * symbol) as shown in the following screenshot:

[380]

Chapter 9

= ‘ home = ‘ =
> <
| ‘ ‘ home |
regions home department ——
home
home
home
employees *

Adding an exception handler

An exception handler is the central place for handling unexpected exceptions in an
application. For example, a method activity defined in a task flow may throw some
business or runtime exceptions when specific conditions are not met at runtime.
ADF allows you to handle such erroneous scenarios in a more user friendly

way by designating one activity in a bounded or unbounded task flow as an
exception handler.

To mark an activity as an exception handler, right-click on the desired activity in the
task flow and select Mark Activity | Exception Handler.

An exception handler can be specified for a bounded or unbounded task flow. At
runtime, when an error is thrown from some activity inside a bounded task flow,
the framework will navigate to the exception handler activity specified for the
current task flow. If there is no exception handler specified for the current task
flow, the framework will check its immediate parent task flow for an exception
handler activity. This repeats till the framework identifies a parent task flow

with an exception handler or finishes the entire task flow call stack. If no exception
handler is found, the exception will propagate to the web container.

[381]

Controlling the Page Navigation

Customizing the default exception handler

Apart from the declarative exception handler activities for task flows, ADF also
allows you to add custom exception handler implementations at application level.
This really helps if you want to do some application level manipulation in response
to the exception. For example, for some specific exceptions you may want to display
special error pages and you may want to do it globally. There are two approaches to
add custom exception handlers:

* Customizing oracle.adf.view.rich.context .ExceptionHandler :
This is offered by ADF and is used widely in pre JSF 2.0 time when there
was no support in JSF to add a custom exception handler in a generic way.
In this approach you will subclass oracle.adf.view.rich.context.
ExceptionHandler to build a custom implementation.

To register a custom exception handler, add a text file named oracle.adf.
view.rich.context .ExceptionHandler in the adf \META-DATA\services
folder. Add the fully qualified name of the custom exception handler class in
the text file.

* Customizing javax.faces.context.ExceptionHandler: This is provided
by the JSF 2.0 implementation. To see whether this is supported by the
version of Oracle ADF that you work on, refer to the release notes. Moving
forward, it is recommended to use the standard JSF exception handler
mechanism for customizing the exception handling in your Fusion web
application. To learn more about this class, refer to the API documentation
which is available online at http://docs.oracle.com/javaee/6/api/
javax/faces/context/ExceptionHandler.html. The steps for building a
custom javax.faces.context .ExceptionHandler class are shown in the
following section.

Building a custom javax.faces.context.
ExceptionHandler

The following are the steps for building custom ExceptionHandler in JSF 2.0
compliant web applications.

1. Create a custom exception handler class that extends the javax. faces.
context .ExceptionHandler class. This is an abstract class and you may
end up implementing many methods if you start with this class. JSF 2.0
provides a convenience class to ease your life, javax.faces.context.
ExceptionHandlerWrapper, which offers a simple implementation of
ExceptionHandler. This class can be sub-classed by developers wishing to
provide specialized behavior to an existing ExceptionHandler instance.

[382]

Chapter 9

The following example overrides the ExceptionHandlerWrapper: :handle ()
method to display a custom error page when an application throws
CustomViewException during the request processing. This example
leverages the JSF implicit navigation model to navigate to the customErrpPage
page. To make this work your application should have the customErrpPage.
jsf page in the project source.

public class CustomExceptionHandler extends
ExceptionHandlerWrapper {
private ExceptionHandler wrapped;
public CustomExceptionHandler ()
super () ;

public CustomExceptionHandler (ExceptionHandler wrapped)
this.wrapped = wrapped;
}
//Override the getWrapped() method to
//return the instance of the exception handler class
//wrapped by this custom handler. Typically this
//would be the original ExceptionHandler provided by
//framework
//See CustomExceptionHandlerFactory::getExceptionHandler ()
@Override
public ExceptionHandler getWrapped() {
return this.wrapped;

@Override
public void handle() throws FacesException
//Iterate over all unhandled exceptions
Iterator i = getUnhandledExceptionQueuedEvents() .
iterator () ;
while (i.hasNext()) {
ExceptionQueuedEvent event =
(ExceptionQueuedEvent) i.next () ;
ExceptionQueuedEventContext context =
(ExceptionQueuedEventContext) event .getSource () ;
Throwable t = context.getException () .getCause() ;
if (t instanceof CustomViewExcpetion) {

FacesContext fc =
FacesContext.getCurrentInstance () ;

[383]

Controlling the Page Navigation

Map<String, Object> requestMap =
fc.getExternalContext () .getRequestMap () ;
try {
//Use Implicit navigation model offered by
//JSF, Application should have
//'customErrPage.jsf' for this to work
NavigationHandler nav =
fc.getApplication() .
getNavigationHandler () ;
nav.handleNavigation (
fc, null, "customErrPage") ;
fc.renderResponse () ;
} finally {
//Remove the exception if it is handled
//by the custom handler
i.remove () ;

getWrapped () .handle () ;

}

2. Build javax.faces.context .ExceptionHandlerFactory to return the
CustomExceptionHandler class that we created in step 1. The method,
getExceptionHandler (), is called once per request. The following is an
example:

public class CustomExceptionHandlerFactory extends
ExceptionHandlerFactory
private ExceptionHandlerFactory parent;

public CustomExceptionHandlerFactory
(ExceptionHandlerFactory parent) {
this.parent = parent;

@Override
public ExceptionHandler getExceptionHandler () ({
ExceptionHandler customExceptionHandler = new
CustomExceptionHandler (parent.
getExceptionHandler ()) ;

return customExceptionHandler;

[384]

Chapter 9

3. Register the custom CustomExceptionHandlerFactory class in faces-
config.xml as shown in the following:

<faces-config ...>

<factorys>

<exception-handler-factory>

comp .packtpub.adfguide.ch9.view.CustomExceptionHandlerFactory
</exception-handler-factorys>

</factory>

</faces-config>

Using method call activity to initialize a
page

A method call activity can be used for invoking business logic while transitioning

to a new view. For instance, consider a simple control flow case defined between
department and employee pages in a web application. When the user navigates to
employee pages by selecting a specific department row from the department page,
the application should fire a query to find employees for the selected department and
the result should be displayed in the employee page. The Oracle ADF framework has
declarative support for invoking methods while transitioning between views.

The following control flow case diagram illustrates the usage of method activity for
querying the employee data source for the selected department, while transitioning
from department to employee view:

S

lhome

viewEmployees “ ‘ N
4 ExecuteWithParams’| o
L a)

3 —

department ExecuteWithParams employee

[385]

Controlling the Page Navigation

Building a task flow with method call activity

In this section we will see how to build a control flow shown in the
previous screenshot:

1. Drag-and-drop the view activity for displaying department details onto
the task flow diagram editor window. Double-click on the view activity to
generate a physical JSF page for the view.

2. Drop the departments view object instance from the Data Controls panel
as an ADF Form onto the department JSF page. Drop a button (af : button)
for navigation from the component palette to department JSF page. Set the
following properties for the button:

i

ii.

1ii.

Set the action attribute value as viewEmployees.

Add af:setPropertyListener to the button component for
assigning the DepartmentId attribute value to a requestSscope
variable when a user clicks on the button to navigate to the
employee page. The remaining activities in the control flow

case can access the currently selected department ID using the
following EL expression: #{requestScope.deptId}. Note that if
the application needs to retain Department Id between multiple
requests for pages, then you should use higher memory scopes
such as pageFlowSope for storing the value.

The navigation button may look like the following:

<af:button text="View Employees" id="b5"
action="viewEmployees">
<af:setPropertylListener from="#{bindings.DepartmentId.
inputvalue}"
to="#{requestScope.deptId}" type="action"/>
</af :buttons>

To learn more about the af : set PropertyListener tag, refer
to the tag documentation available online at: http://jdevadt.
oracle.com/adf-richclient-demo/docs/tagdoc/af
setPropertylListener.html.

[386]

Chapter 9

3. The next activity in the control flow case is a method call to execute the
employee view object for finding employees for the selected department id.
Before adding this activity, you will have to modify the query in EmployeeVO
to return employees for a specific department. The EmployeeVO is built
from the EMPLOYEES table in the HR schema. Select the Query tab in
EmployeeVO and add the following to the WHERE clause section in the
query screen.

EmployeeEO.DEPARTMENT ID = :bindVarDepartmentId

Create a bind variable bindvarDepartmentId and mark it as required. With
this we have finished the ground work for reading the employees collection
for a department. Refer back to the topic Using bind variables in Chapter 4,
Introducing the View Object, if you need a quick brush up on bind variables.

4. Switch back to the task flow definition in the designer window. Select the
ExecuteWithParams operation displayed under the employee view object
instance in the Data Controls panel and drop it onto the task flow as
method activity. While doing so, JDeveloper will ask you to specify a value
for bindvarDepartmentId. Set the value as #{requestScope.deptId}.

5. Draw a control flow case from the department view to the
ExecuteWithParams method activity for the outcome viewEmployees.

6. Drag-and-drop the view activity for displaying employee details onto a
task flow. Double-click on the view activity to generate a physical JSF page
for the view. Drop the same employee view object instance that you used
for defining the method activity from the Data Controls panel as an ADF
table on the page. Draw a control flow case from ExecuteWithParams to the
employee view.

You are done with the implementation.

What happens at runtime?

At runtime, when a user transitions from the department view to employee view, the
framework will execute the intermediate method activity by passing the department
id. This intermediate step prepares the employees row set for display.

[387]

Controlling the Page Navigation

Building a menu model

A typical Fusion web application may contain a mix of bounded and unbounded
task flows. As discussed, unbounded task flow activities can be accessed without
any specific order. This makes activities in unbounded task flows, a natural choice
for target for navigation components or menu items in a Fusion web application. The
good news is that, JDeveloper has design time support for generating an XML menu
model from unbounded task flow activities, which can be used as a data model for
navigation components. The steps for declaratively building a menu model from

the unbounded task flow is well explained in the online tutorial entitled Create ADF
Menus for Page Navigation. To access this tutorial, go to the link http://www.oracle.
com/technetwork/developer-tools/jdev/documentation/index.html and

choose JDeveloper and ADF Tutorials | Create ADF Menus for Page Navigation.

Summary

This chapter introduced you to the navigation model used in a typical Fusion
web application. Specifically, you learned about the navigation model in the JSF
framework and extra offerings from the ADF Controller in the form of task flows.
You also learned how to build a simple unbounded task flow towards the end.

We will take a closer look at the bounded task flow concepts and more advanced
examples in the next chapter.

[388]

http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html

10

Taking a Closer Look at the
Bounded Task Flow

This chapter is in continuation of the previous chapter with a special focus on
features offered by the bounded task flows. This chapter will take you through
the following topics:

The properties of a bounded task flow

Building a bounded task flow

Working with bounded task flow activities
Parameterizing a bounded task flow

Consuming bounded task flows as ADF regions
Lazy loading of an ADF region

Refreshing an ADF region

Displaying task flows using a pop up component
Using contextual event for communicating to an ADF region
Dynamically adding multiple regions to a page
Distributing ADF task flow as ADF library
Using a train component in a bounded task flow
Transaction management in a bounded task flow

The life span of a bounded task flow

Taking a Closer Look at the Bounded Task Flow

Introduction

The bounded task flows improve the modularity and maintainability of a Fusion web
application by splitting a single massive page flow into multiple reusable bounded
page flow implementations. A bounded task flow encapsulates task flow activities,
control flow cases, managed bean definitions, security checks, and declarative
business transactions. When you work on a Fusion web application, you may use
bounded task flows extensively to build reusable page flows. The bounded task
flows can be reused within the same application in multiple places by embedding
the reusable artefacts, and the same can be invoked remotely by external Fusion web
applications as well.

The properties of a bounded task flow

Let us begin now with the generic properties on bounded task flows and then later
focus on more advanced features offered by the task flow to handle specific use
case scenarios.

The ADF framework offers many configuration parameters for a bounded task flow.
You can override the default values using the property inspector in the JDeveloper
IDE as shown in the following screenshot:

@tﬂsk—ﬂm—deﬁn‘lﬁnn - emp-summary-task-flow-definition - Pro... * E]

Wl Qrnd @

= General

© Task Flow ID = ‘empsummary-task-ﬂow-deﬁnmon |

o Default Activity: [E Executewithparams -
Exception Handler: [<default> -
Initializer: I [~
Finalizer: ‘ ‘ v
Save Point Restore Finalizer: | |~

o Use Page Fragments: [true -~
Visibility
URLInvoke: [<default> (caiculated) -

Library Internal: | <default> (faise) =)

Based on Template

Document: [|~

Based on Template ID = | |

+ Description
+ Managed Beans
+ Parameters

= Behavior

o Train: [edefauit> (false) -]
© Task Flow Reentry: [<defauit> (reentry-allowed) -
Critical: [<default> (False) -l

Transaction
| <MNo Controller Transaction 'l
&) Share data controls with calling task flow

[[] Mo save point on task flow entry

[390]

Chapter 10

The following are the configurable properties that you may see in a bounded
task flow:

Initializer: This is a managed bean method that is invoked when a task flow
starts execution. The value is specified using an EL expression.

Finalizer: This is a managed bean method that is invoked when a task flow
exits. The value is specified using an EL expression.

Save Point Restore Finalizer: This is a managed bean method that is invoked
when a task flow restores a save point. This is used for adding any custom
method which is required to run after the execution of the framework code
for a save point. If you need a quick brush up on how to define a save point
in a task flow, refer back to the topic entitled Using save points in a task flow in
Chapter 9, Controlling the Page Navigation.

URL Invoke: This property decides whether the task flow can be invoked
through URL. URL invocation should be enabled if the task flow needs to
be used remotely. The following are the possible values for this flag:

i. url-invoke-allowed: URL invocation is allowed.

ii. wurl-invoke-disallowed: URL invocation is not allowed. If
attempted to invoke task flow through URL, the ADF Controller
will return a HTTP 403 status code in this case.

iii. calculated: This is the default value for the URL Invoke property.
This option will allow URL invocation if the bounded task flow
uses the view activity as default activity and does not use any
task flow initializer.

Library Internal: This property controls the visibility of a task flow when
packaged in an ADF library. This helps developers to expose only those task
flows that are indented for reuse.

Parameters: The Parameters section allows you to define input parameters
for the task flow. Parameterization makes a task flow more generic and
reusable. You can specify parameter name, type, and value. For example,
when you define a task flow to display employee details for a department,
you can parameterize the task flow to accept the department id from the
caller so that it can be reused for any department. To learn how to specify
parameters for a bounded task flow, refer the section Parameterizing a bounded
task flow, in this chapter.

[391]

Taking a Closer Look at the Bounded Task Flow

* Return Value: This feature allows you to define the return parameter value
to the caller. You can specify return the parameter name, type, and return
value. For example, suppose you are displaying the task flow in a pop up
that can be used to search and select particular an employee row. The task
flow should return the selected employee row to the caller in this case, which
can be declaratively achieved by using this feature. This is explained in the
section Defining a task flow return value, in this chapter.

* Train: This option, if set to true, generates a train model for the task flow
activities. The train model can be used as a data model for various train
components in the Ul For example, consider a typical shopping cart site
that processes a transaction in multiple steps. You can use the train
feature provided by ADF for such implementations. The train component
summarizes the multiple steps (view activities) of a task flow as a
navigational component in the UL

* Task Flow Reentry: This option decides whether or not a user can re-enter
the task flow by clicking on the browser's back button. The possible values
are as follows:

i. reentry-allowed: Allows re-entry to the task flow.
ii. reentry-not-allowed: Disallows re-entry to the task flow.

iii. reentry-outcome-dependent: The re-entry permission for the task
flow depends on the outcome that was received when the same
bounded task flow was previously exited via the task flow return
activities. Note that a task flow can take multiple return activities.
If the previously used task flow return activity has a re-entry flag
marked as reentry-allowed, then the framework allows re-entry
this time as well. The framework disallows re-entry in all
other cases.

When an end user re-enters a task flow using a browser's back button, and
the re-entry is allowed, the framework will re-initialize the task flow state.
This includes re-initialization of input parameters used in the task flow, re-
initialization of the transaction state, and re-execution of the default activity.
The framework discards all the changes that are made before re-entry.

* Critical: If you mark a task flow as critical by setting the value to true, the
framework treats the task flow with extra care.

i. If the application is configured to use implicit save points
(configured in adf -config.xml), the framework will generate
implicit save points on entry to all task flows that are marked
as critical. Refer back to the topic What happens when you create
an ADF Controller save point? in Chapter 9, Controlling the Page
Navigation, if you need a quick brush up on implicit save points.

[392]

Chapter 10

ii. The framework will keep track of uncommitted data changes for
critical task flow and warn the user if the person tries to exit from
the task flow without committing changes.

* Transaction: This property helps to declaratively manage transactions for a
task flow. The possible transaction attributes are as follows:

i. No Controller Transaction: The bounded task flow neither
participates in existing transactions nor starts a new transaction.
As the framework does not track pending changes for this setting,
you will not be able to use declarative features available with
Task Flow Return to commit changes to the database.

ii. Always Use Existing Transaction: The bounded task flow
will always participate in an existing transaction. If no existing
transaction is found in progress, then an exception is thrown
when the task flow is initialized.

iii. Use Existing Transaction If Possible: The bounded task flow
either participates in an existing transaction if one exists, or starts
a new transaction upon entry of the bounded task flow if no
transaction exists.

iv. Always Begin New Transaction: The bounded task flow always
starts a new transaction when entered. The new transaction
completes when the bounded task flow exits.

We will discuss these transaction attributes in detail under the section
entitled Transaction management in a bounded task flow towards the end
of this chapter.

* Share Data Control with Calling Task Flow: Check this property to share
the data control with the calling task flow. You should not turn on this
property if the transaction type is set as Always Use Existing Transaction
or Use Existing Transaction If Possible.

* No Save Point on Task Flow Entry: On task flow entry, the framework will
create model save points to store the current state of the model layer if you
set the transaction as Always Use Existing Transaction or Use Existing
Transaction If Possible. This save point is used later to restore the model
state on the exit of the task flow if the task flow return activity is configured
for restoring the save point (the Restore Save Point option in Task Flow
Return activity). Apparently, save point creation on task flow entry is not
really required if the task flow does not need to roll back the changes on
exit. The No Save Point on Task Flow Entry option allows you to optionally
prevent the creation of an ADF model save point on task flow entry.

[393]

Taking a Closer Look at the Bounded Task Flow

Building a bounded task flow

In this section, we will build a bounded task flow to get a feel for the visual and
declarative features offered by JDeveloper IDE for building reusable end-to-end
navigation cases. The steps for defining activities and navigation cases for a bounded
task flow are conceptually similar to that of an unbounded task flow, which we
discussed in the last chapter under the topic Building an unbounded task flow.
However there are a few additions for a bounded task flow.

To define a bounded task flow, perform the following steps:

1.

Right-click on the view controller project in the application panel and then
select New | ADF Task Flow in the context menu.

In the Create Task Flow dialog window, enter the filename and directory for
the task flow. You should make sure that the Create as Bounded Task Flow
option is selected (this is selected by default) in the Create dialog window.
Optionally modify the Default Task Flow ID property that is populated by
the IDE. Select the Create with Page Fragments option if you want to embed
this task flow in a parent page using a region component. Alternatively,

if you want the task flow to be built using complete JSF pages as view
activities, uncheck this option. A bounded task flow built with JSF

pages can be run independently.

Once you have generated a bounded task flow, use the property inspector
window to alter the default configurations generated for the task flow. The
property inspector allows you to specify all the task flow properties that we
discussed in the previous section.

Next is to define the activities and control flow cases for the task flow. At a
high level these steps remain the same as we did for unbounded task flows
in the previous chapter. However, there are some additions available for
bounded task flow such as default activity, parent action, and task flow
return activity. These are discussed in detail in the coming section.

To return from a task flow, you can drop the Task Flow Return activity
from the ADF Task Flow component palette and define the appropriate
navigation to this activity.

[394]

Chapter 10

The following is an example for bounded task flow with CreateInsert as the default
activity and Save and Cancel set as the return activities.

o

save

save

Createlnsert

Createlnsert createEmployee

cancel

o

Working with bounded task flow
activities

In this section we will take a closer look at the commonly used activities for a

bounded task flow such as default activity, parent action, task flow call, task
flow return, and exception handler.

Marking an activity as the default activity

The default activity is designated as an activity to run first (default entry point) in
a bounded task flow. Based on the outcome of the default activity and control flow
cases definitions, the framework chooses the next activity for execution.

By default, JDeveloper will mark the first activity that you added as the default
activity. However you are allowed to modify the default activity at any time.
To designate one of the activities as the default activity in a bounded task flow,
right-click on the appropriate activity in the task flow diagram and select Mark
Activity | Default Activity in the context menu. Note that you can mark any
and only one activity in the task flow definition as the default activity.

[395]

Taking a Closer Look at the Bounded Task Flow

Marking an activity as an exception handler

We have discussed the support for handling exceptions in task flows in Chapter 9,
Controlling the Page Navigation, in the section entitled Adding exception handler.
This section summarizes the same topic for a bounded task flow.

Bounded task flows allow you to mark any one activity in the task flow as an
exception handler. Typically a view activity or a router activity is used as an
exception handler. Router activity is used when you need to handle different
exception types where some exceptions need special treatment.

To mark an activity as an exception handler, select the desired activity in the
task flow diagram and then select Mark Activity | Exception Handler in the
context menu.

Calling a bounded task flow using the task
flow call activity

A bounded task flow can invoke another bounded task flow declaratively using the
task flow call activity.

To use this feature, both the calling and called task flows should be built using

the same page types. In other words, a bounded (or unbounded task flow) built
with complete JSF pages can only call another task flow built with complete JSF
pages. Similarly, a bounded task flow built with page fragments can use a task flow
call activity to call another bounded task flow built with page fragments. This is
because a page fragment at runtime generates a DOM fragment which cannot run
independently in a browser and requires to be embedded inside an HTML DOM tree
to generate the complete page. This implies also that a page fragment cannot embed
a complete JSF page within it. So the runtime cannot let a page fragment part (which
is embedded in a complete page) to navigate to a new complete page as it breaks the
DOM hierarchy on the client side.

To call a bounded task flow using the task flow call activity from a bounded or
unbounded task flow, open the calling task flow in the diagram editor. A task flow
call activity can be added to it using any one of the following approaches:

* Drag-and-drop a task flow call activity from the ADF Task Flow component
palette onto the task flow diagram. Specify the Document and ID for the
target task flow using the property inspector. The Document represents the
target task flow definition XML filename along with the path details relative
to <Web Contents of the view controller project, and ID represents the
identifier for the target task flow. The following is a sample code snippet
for a task flow call:

[396]

Chapter 10

<task-flow-call id="emp-detail-task-flow-definition">

<task-flow-references>
<document >

/WEB-INF/dynamic/emp-detail-task-flow-definition.xml

</document >

<id>emp-detail-task-flow-definition</id>

</task-flow-reference>
</task-flow-call>

Another approach to call a task flow is to drag-and-drop an existing task

flow from the Application Navigator tab on to the task flow diagram. While
doing so, if the dropped task flow takes parameters, IDE will ask you to
specify values for the parameters. The following diagram illustrates the
drag-and-drop features offered by the IDE.

B ViewController
r_—l Application Sources
-] web Content
l_:l contextualevent
l_:l dynamic
l_:l multitaskflow
l_:l taskflowreturn
l_:l train
=[] WEB-INF
r_—l contextualevent
Br_—l dynamic
[dent-task-fow-defiition. xml
L_E‘ emp-detail-task-flow-definition. xml

Applicaﬁon Mavigator * E] dept—ti&k—ﬂjw—deﬁﬁﬁbﬂ.xml x
[ADFDevGLideCh10 ~ @~ | & & won ~|ishowr '§ = T2 I
=l Projects B @ FrE-

Biounded Task Flow

L_E‘ emp-summary-task-flov-definition. xml
r_—l multitaskflow
E-7] taskflowreturn

Bmp—étﬂil-t&sk-ﬂnw-deﬂ nition

The previous approaches are good enough to invoke static task flows. What if you
want to invoke a different task flow whose ID is known only at runtime?

[397]

Taking a Closer Look at the Bounded Task Flow

You will use dynamic task flows in such scenarios as explained in the
following section.

Using dynamic task flow calls

To invoke a task flow dynamically, drop a task flow call activity onto the calling
(unbounded or bounded) task flow diagram editor. In the property inspector for the
task flow call, select Task Flow Reference as Dynamic and provide an EL expression
that returns the task flow ID at runtime. The following is an example:

Task Flow Reference

|Dynamic "l

Dynamic Task Flow Reference: |:{viewSche.DynamicTaskFIDu-.'Bean.dynamicTaskFIDwId} | o

The getdynamicTaskFlowId () method referred in the EL ${viewScope.myBean.
dynamicTaskFlowId} is as follows:

//In MyBean implementation class
public class MyBean({

//Task flow identifiers used in this e.g.
private final String EMP_SUMMARY_TF =
"/WEB-INF/dynamic/emp-summary-task-£flow- definition.xml#emp-
summary-task-flow-definition";
private final String EMP_DETAIL TF =
"/WEB-INF/dynamic/emp-detail-task-flow- definition.xml#temp-
detail-task-flow-definition";

//Method that returns task flow id at runtime
public TaskFlowId getDynamicTaskFlowId() {
if ("summary".equals (AdfFacesContext.getCurrentInstance () .

getPageFlowScope () .get ("EmpViewHint"))) {
return TaskFlowId.parse (EMP_SUMMARY TF) ;
} else {

return TaskFlowId.parse (EMP_DETAIL TF) ;

}
}
}

[398]

Chapter 10

The getDynamicTaskFlowId () method in the previous code snippet returns
different task flow IDs based on the value for the page flow scope variable
EmpViewHint. The task flow ID string used in this method is constructed by
concatenating document and ID elements for the target task flow. {document }#{id},
where {document } represents target task flow definition XML filename along with
the path details relative to <web Content> of view controller project, and {id}
represents identifier for the target task flow. An example is as follows: " /WEB- INF/
dynamic/emp-detail-task-flow-definition.xml#emp-detail-task-flow-

definition".

Commonly used properties for a task flow call
activity

The following are some of the commonly used properties for a task flow call activity
that you must be aware of:

Parameters and Return Values: If the called task flow takes parameters,
specify parameters using the Input Parameter section in the Property
Inspector window. Similarly, if the called task flow has return values, specify
an EL expression pointing to an appropriate memory scoped variable for
storing returned values.

before-listener and after-listeners: ADF allows you to listen to the start and
end of a task flow call activity.

To specify the before and after listeners, expand the Listeners section in the
Property Inspector window for a task flow call activity and specify the EL
expression pointing to a method action binding or a managed bean method.
The before listener is invoked before entering into bounded task flow and the
after listener is invoked after exiting from the called task flow. These can be
used to execute some custom business logic before and after the execution

of a task flow. For example, if you need to log the task flow calls in your
application for audit purposes, you can use these interceptors to hook

the logic.

Run As Dialog: Select this option to run the called task flow in a
dialog window.

To use this option, expand the Behavior section in the property inspector for
a task flow call activity and then set Run As Dialog to true. Optionally select
the Display Type as an inline-popup to run the task flow inside an inline
window instead of an external popup window.

[399]

Taking a Closer Look at the Bounded Task Flow

To open up the task flow in a dialog, you must set useWwindow = "true"
for the action component which triggers the navigation to the task flow call
activity. The following is an example:

<af:button text = "Loc LOV" id = "b5" action="viewDeptTaskFlow"
useWindow = "true"/>

Using remote task flow calls

Oracle ADF allows you to embed bounded task flows running on a remote server in
your Fusion web application.

To invoke a remote task flow select the task flow call activity in the diagram, and
then in the Property Inspector window, specify Remote Application URL pointing
to the task flow in a remote web application.

You have not finished yet. To invoke a bounded task flow remotely you have

to enable URL access in the target task flow. To enable URL access for a bounded
task, open the task flow in the diagram editor and in the Property Inspector window
select url-invoke-allowed. The default is calculated which will allow the URL to be
invoked if the task flow has a view activity as the default activity and does not have
any initializer routine.

The URL syntax for calling a bounded task flow is as follows:

http://<server root>/<application contexts>/faces/adf.task-flow?adf.
tfid=<task flow definition ids>&adf.tfDoc=<document name>&<named

parameter>=<named parameter value>

The following is an example:

http://127.0.0.1:7101/MyTestApp/faces/adf.task-flow?adf.
tfId=employee-task-flow-definition&adf.tfDoc=/WEB-INF/taskflowreturn/
employee-task-flow-definition.xml&departmentId=10&locationId=1700

[400]

http://127.0.0.1:7101/MyTestApp/faces/adf.task-flow?adf.tfId=employee-task-flow-definition&adf.tfDoc=/WEB-INF/taskflowreturn/employee-task-flow-definition.xml&departmentId=10
http://127.0.0.1:7101/MyTestApp/faces/adf.task-flow?adf.tfId=employee-task-flow-definition&adf.tfDoc=/WEB-INF/taskflowreturn/employee-task-flow-definition.xml&departmentId=10
http://127.0.0.1:7101/MyTestApp/faces/adf.task-flow?adf.tfId=employee-task-flow-definition&adf.tfDoc=/WEB-INF/taskflowreturn/employee-task-flow-definition.xml&departmentId=10
http://127.0.0.1:7101/MyTestApp/faces/adf.task-flow?adf.tfId=employee-task-flow-definition&adf.tfDoc=/WEB-INF/taskflowreturn/employee-task-flow-definition.xml&departmentId=10

Chapter 10

The following screenshot displays the task flow call properties specified in the
Property Inspector window for invoking the remote task flow:

@Esk—ﬂow-call -RemoteCall - Property Inspector
'ﬁ] / Q Find

=] General

@D

® Activity ID = [RemoteCall |

Task Flow Reference
|static |

Document: |,’WEB—INFftaskﬁou\'reb.lrnfemployee—task—ﬁo'a\'-deﬁniﬁnn.xml |v

ID: |emp|0yee—task—ﬂo'..\'-deﬁniﬁnn [=|

o Remote Application URL : |htn3:ffmyserver: 7101/MyTestApp,faces fadf. task-flow | R

Description

-] Parameters

Input Parameter Map:

Input Parameters EF %
Mame * Value * Pass By Value -

departmentld 10 L]

Return Values o %

Mame = Value * -

employeeld #{pageFlowScope. employeeld}

Listeners

Behavior

Customization

What happens at runtime when a remote task flow is

called?

When an application invokes the remote task flow, behind the scenes the framework
constructs a remote URL for invoking the target task flow. Along with this, it also
constructs a return URL using the information in the current server application, and
then passes that to the remote server (using the URL parameter _return-url) where
the task flow is executed. When the remote task flow returns, the ADF Controller
serializes and URL encodes any return values, and then redirects the client to the
return URL passed by the caller.

[401]

Taking a Closer Look at the Bounded Task Flow

What you may need to know when you use remote task

flow

When an application invokes remote task flow, the framework exits the current task
flow and transfers the control to the remote task flow seamlessly. This pattern is
widely used when a Fusion web application needs to display Ul pages hosted in a
remote Fusion web application.

When you use remote task flows, you must be aware of the following points:

* Geometry management for the UI: The view embedded as the remote task
flow does not support geometry management set by the parent page.

* Memory scoped variables: Both calling and called task flow will have
two separate memory areas and apparently they may not be able to
share data though shared memory scopes such as request, session,
and application scopes.

* Interaction Patterns: Task flow input parameters and return values are the
only mechanisms available for enabling interaction between calling and
called task flows. Contextual events are not supported when task flows are
invoked from a remote server. In case you do not know what the contextual
event is, here is a one line description: The contextual event helps you
to define custom events in the binding layer in order to establish region
to region interaction. This is explained under the section entitled Using
contextual event for communicating to an ADF region, in this chapter.

* Run As Dialog option: The remote task flow call and Run As Dialog options
are mutually exclusive. You cannot have both these options at the same time
in the Oracle ADF 11.1.2.2.0 release.

* Transaction Support and Sharing Data Control: The remote task flow will
not be able to share transaction context with the caller. In other words, the
declarative transaction feature of task flows such as Always Use Existing
Transaction and Use Existing Transaction if Possible will not work when
accessed remotely. A remote task flow cannot share data control with calling
task flow as well.

* Security: The calling task flow will not propagate the security context to the
remotely running task flow.

[402]

Chapter 10

Note that the task flow call activities that we discussed in this section
\ are limited to the bounded task flow use cases. We are not repenting
~ the general discussion on activities such as View, Method Call, Parent
Q Action, Router, and URL View that we had in the last chapter. If you
need a quick brush up on these items, refer to the topic Task flow activities
in Chapter 9, Controlling the Page Navigation.

Parameterizing a bounded task flow

You can make a bounded task flow more generic and reusable by adding input
parameters and return values.

Defining a task flow input parameter

To specify input parameters perform the following steps:

1. Open the task flow in the overview editor, select the Parameters tab and
click on the green plus icon in the Input Parameter Definition section to
add parameters.

2. Enter the Name for the parameter, Java Class type, Value, and the Required
flag. The parameter value is specified using an EL expression. Note that an
EL expression used as a parameter value is just a pointer to a memory scoped
variable or managed bean property for storing the parameter's value passed
by the caller. The task flow can use the EL expression set for a parameter to
refer the parameter value at runtime.

Note that you can also use Property Inspector for a task flow to add parameters.
The steps for defining parameters remain the same as we previously discussed.

Specifying input parameter values for a task
flow

If a task a flow takes parameters, IDE will allow you to specify parameters when you
drop it either as a region onto a page or as a task flow call activity onto a bounded or
unbounded task flow diagram window.

[403]

Taking a Closer Look at the Bounded Task Flow

Consider a task flow definition emp-task-flow-definition with Departmentld as
the parameter. When you drop this as a region to a page, IDE will display the Edit

Task Flow Binding dialog with a list of input parameters.

Edit Task Flow Binding

Task Flow:
Input Parameters Map:

Input Parameters

[l

WEB-INF femp-task-flow-definition. xml#emp-task-flow-definition

| | ~

Mame
Departmentld

Value -
|:{bindings.Deparh‘nent[d.input‘u'alue} |v

* = Required

Help oK Cancel

In the Edit Task Flow Binding editor, you will see an Input Parameter Maps field
as well as a pre-populated Input Parameters list. These are two possible declarative
options offered by the IDE to specify parameter values for the task flow:

Using Input Parameters list: In this approach you will specify parameter
values individually for each parameter. You may use this option for
specifying parameter values for static task flow bindings where a region
will always point to the same task flow during the page lifecycle.

Parameter values can be specified either as static literal values or dynamic EL
expressions. In this example, the value for Departmentld is specified through
the following EL expression: #{bindings.DepartmentId.inputValue}.

Using Input Parameters Map: In this approach, parameter values will be
specified using an EL expression that evaluates to a java.util.Map. In other
words, this EL point to a Java property in a bean that returns a filled input
parameter map of type java.util.Map to the caller.The parameter map
will be containing parameter names and values. This is useful for passing
input parameters to a dynamic region where the task flow binding changes
dynamically and each task flow may have varying number of parameters.

[404]

Chapter 10

The following example illustrates the usage of EL expressions as input
parameter map values for a dynamic task flow.:

<taskFlow id="dynamicEmpRegion" taskFlowId="${viewScope.
DynamicTaskFlowBean.dynamicTaskFlowId}" activation="deferred"
xmlns="http://xmlns.oracle.com/adf/controller/binding"
parametersMap:"#{viewScope.DynamicTaskFlowBean.parameterMap}"

/>

The getParameterMap () method definition in the DynamicTaskFlowBean
class is as follows:

//In DynamicTaskFlowBean implementation class

/**
*Parameters used in the dynamically added taskflow.
*/
public Map getParameterMap () {
//Clear the parameter map
parameterMap.clear () ;
//Get currently active task flow id
String tfName = getDynamicTaskFlowId() .
getFullyQualifiedName () ;
//Get the binding container
BindingContainer bindings = getBindingContainer() ;

//Use different input parameter values based on task flow
//selected for display in dynamic region
if (EMP_DETAIL TF.equals (tfName)) {
//This example read desired
// attribute binding used in the UI
// and pass the value to the task flow
AttributeBinding deptAttrib =
(AttributeBinding)bindings.
getControlBinding ("DepartmentId") ;
AttributeBinding empAttrib = (AttributeBinding)bindings.
getControlBinding ("EmployeeId") ;
parameterMap.put ("DepartmentId",
deptAttrib.getInputValue()) ;
parameterMap.put ("EmployeeId",
empAttrib.getInputValue()) ;
} else if (EMP_SUMMARY TF.equals (tfName))
AttributeBinding deptAttrib =
(AttributeBinding)bindings.
getControlBinding ("DepartmentId") ;

[405]

Taking a Closer Look at the Bounded Task Flow

parameterMap.put ("DepartmentId",
deptAttrib.getInputValue()) ;

}

return parameterMap;
//Return current binding container
public BindingContainer getBindingContainer () {
return BindingContext.
getCurrent () .getCurrentBindingsEntry () ;

}

If you are dropping a bounded task flow onto a bounded or unbounded task flow
diagram as a Task Flow Call activity, then you must use Property Inspector for
the task flow call activity to configure the input parameters. However the concept
remains the same as we discussed for region binding.

Defining the task flow return value

A bounded task flow has the ability to return a value to the caller. To define

the return value, open the bounded task flow in the overview editor, select the
Parameters section and click on the green plus icon in the Return Value Definitions
section. Enter the parameter name, Java class type, and value. The parameter value
can be specified as a static literal or an EL expression.

Reading a return value from a task flow

To read the returned values from a caller, you have two options as discussed in
the following:

* Reading returned values when a called task flow is run as a page: Create
the task flow call activity for calling the task flow that returns a value to the
caller on exit. You can do this visually by dropping the desired target task
flow on to the calling task flow diagram. Select the task flow call activity in
the diagram and in the Property Inspector window, expand the Parameters
section. The Return Values section will pre-populate all the return value
names defined in the target task flow. Enter an EL expression pointing to a
memory scoped variable or managed bean for storing the returned values.
Use these EL expressions for referencing returned values from the calling
task flow at a later point.

* Reading returned values when called task flow is run as dialog: The
approach for reading the returned value is slightly different when the
task flow is run as dialog. The following are the details:

[406]

Chapter 10

Drop the target task flow as the task flow call activity onto the calling
task flow diagram editor. In the Property Inspector window, expand
the Behavior section and set Run As Dialog to true. Optionally,
select the Display Type as inline-popup to run the task flow

inside an inline window instead of an external pop up window.

To read a returned value from a custom return listener method,
specify the Dialog Return Value. Note that this value should
match with the return value defined for the called task flow.

The following screenshot displays the task flow call activity settings
to read the task flow returned parameter selectedLoc from the
return listener method. In this example the selectedLoc is specified
as a return value name in the location-lov-task-flow-definition:

= General
o Activity ID *: ||0c -task-flow-definition

Task Flow Reference

[static |

Document: |N.|'EB—INF,’taskﬂowreb_lrnﬂocat'on-Iov—task—ﬂo'.i\'-deﬁniﬁon.xml |v
1D: |region-lov-task-ﬂo'n'-deﬁniﬁon |V|
Remote Application URL : | | w

Description
Parameters
Listeners

= Behavior

Fun As Dialog

o Run As Dialog: |true v| >

o Display Type: |inline -popup v|

o Dialog Return Value: |se|ectedL0c | o
Customization

3. Now open the desired JSF page that displays the task flow as

dialog. To open up the task flow in a dialog at runtime, you must

set useWindow = "true" for the action component which triggers
the navigation. To read the value returned by a task flow which is
configured to run as a dialog, specify a custom return listener method
as shown in the following example:

<af:commandButton text="Loc LOV" id="b5"
action="displayLocPopup" useWindow="true"
returnlListener="#{TaskFlowBean.dialogReturnHandler}"/>

[407]

Taking a Closer Look at the Bounded Task Flow

A working example illustrating how to use the returnListener
method to read the returned value from a task flow can be found in the
example code that we mentioned at the beginning of this book, in the
Preface section. To access the example code, open the ADFDevGuideCh10
workspace in JDeveloper and look for deptWithTaskflowLOV.jst
in the ViewController project.

In this example, the command button generates the action outcome
as displayLocPopup on button click, which causes the application to
navigate to the target task flow. The useWindow = "true" setting for
the command button tells the framework to display the target task
flow in a window.

The returnListener will be invoked on exit from the called task
flow. You can EL bind the returnListener to read the return value
from the task flow. The dialogReturnHandler method used in this
sample JSF code is as follows:

public void dialogReturnHandler (ReturnEvent returnEvent) {
//Use returnEvent .getReturnParameters () to read
//multiple return values

//Store the returned value to page flow scoped variable
AdfFacesContext.getCurrentInstance () .getPageFlowScope () .
put ("selectedLoc", returnEvent.getReturnValue()) ;

//The following logic refreshes the desired part of

//the UI to display return value

//Mark the desired component for refresh
UIComponent comp = returnEvent.getComponent () .

findComponent ("it4") ;
RequestContext.getCurrentInstance () .

addPartialTarget (comp) ;

}

Consuming bounded task flows as ADF

regions

Earlier we had discussed the usage of task flow call activity for displaying a bounded
task flow built with complete JSF pages. Bounded task flows built with page
fragments are displayed by using an ADF region (af : region) component.

[408]

Chapter 10

The ADF region is a place holder component that allows dynamic contents to

be included in the parent page. When you run a page with a region, the region
component peeks into the underlying oracle.adf.view.rich.model.RegionModel
for identifying the view to be displayed and instantiates the view. In general, ADF
uses the af : region tag to display bounded task flows built using page fragments.
ADF allows you to embed a region in a page or page fragment. Note that regions are
capable of triggering the navigation of contents in its own display area (view port)
without affecting the other regions or parent page. This is the reason why you are
able to navigate between pages in bounded task flow added inside a region, keeping
the parent view from being affected.

To build an ADF region containing task flow, perform the following steps:

1. Drag-and-drop the bounded task flow onto the page.

2. In the context menu, select Region. If the task flow that you dropped takes
parameters, IDE will display the Edit Task Flow Binding dialog window for
specifying parameter values.

3. Click on OK to save changes.

Dynamically displaying the task flow

To switch the contents displayed in a region dynamically, while dropping task flow
on to the page, select Dynamic Region for holding the task flow. The af:region
component generated in the JSF page remains the same for both static and dynamic
regions. However, when you choose a dynamic region as a container for task flows,
the taskFlowId referenced by the corresponding task flow binding will be pointing
to an EL expression that evaluates to a task flow ID at runtime. The following is an
example for task flow binding used in a dynamic region:

<taskFlow id="dynamicRegionl" taskFlowId="${viewScope.
myBean.dynamicTaskFlowId}" activation="deferred"
xmlns="http://xmlns.oracle.com/adf/controller/binding"/>

Refer to the topic Dynamic task flow reference in a task flow call, in this chapter, to learn
the implementation of ${viewScope.myBean.dynamicTaskFlowId}.

[409]

Taking a Closer Look at the Bounded Task Flow

Lazy loading of an ADF region

When you run a page, by default, all embedded regions will be loaded at once
during the initial display of the parent page. Note that if a page contains N regions,
N task flows are executed during the page load. This is acceptable if all regions are
exposed to the user during the initial display of the page itself. What if some regions
are displayed in a pop up or inside a tabbed pane? You may definitely want to

defer the execution of these regions until an end user opts to view them. ADF task
flow has declarative support for such scenarios. The task flow binding provides an
activation flag to control the activation of the underlying task flow.

To set the appropriate activation property for a task flow, open the page definition
file in the overview editor. Select the desired taskFlow entry in the Executables
section and then select the appropriate value for the activation property in the
Property Inspector window. You can choose one from the following list:

* immediate: This option activates the region immediately on the initial
display of parent page. This is the default value for the activation flag. Note
that, with this flag, the task flow is activated if the region is hidden in the
parent page.

* deferred: This option defers the activation of a region until it is shown to
the user. In other words, the deferred flag enables lazy loading for task flows
when used in regions. Note that this option is applicable only if the page is
built by choosing the Facelet document type. In other words, this flag does
not have any effect when the parent page is built as JSPX.

* conditional: This option activates the region if the EL expression specified for
the active attribute evaluates to true. This is useful to conditionally activate
the task flow bound to the region.

In the following example, the task flow is activated only when the EL
expression set for the active flag evaluates to true.

<taskFlow id="depttaskflowdefinitionl"

taskFlowId="/WEB-INF/hr/dept-task-flow-definition.xml#dept-
task-flow-definition"

activation="conditional" xmlns="http://xmlns.oracle.com/adf/
controller/binding"

active="{empty pageFlowScope.activeFlag ? false :
pageFlowScope.activeFlag}"/>

[410]

Chapter 10

) Q is very useful when you work on multiple enterprise applications and you

You can use the Dynamic Tabs UI Shell Template (UI Shell) page as a
basic container page for Fusion web applications to have a generic look
and feel and similar usability experience across applications. The UI Shell

want to provide a similar browsing experience for the end users. To learn
more about the usage of the UI Shell template, refer to the topic Dynamic
Tabs Ul Shell Template Functional Ul Pattern available on the Oracle
Technology Network site: http: //www.oracle.com/technetwork/
developer-tools/adf/uishell-093084.html.

Refreshing an ADF region

While displaying a task flow using a region, the framework generates a separate
view port for the region and tracks all the user actions inside the region separately
from the parent page. All regions are initially refreshed during the first display of the
containing page. What if you want to refresh the task flow bindings in response to
some user actions outside of the region?

The ADF binding layer provides both declarative and programmatic solutions for
such use cases. The following are the details:

Refreshing the task flow conditionally: To refresh (restart) a task flow
based on business conditions, you can specify RefreshCondition =

#{EL expression} for the taskFlow executable binding. When you set
RefreshCondition, the corresponding region will be refreshed (the task
flow will be restarted) whenever an EL expression evaluates to true during
the page lifecycle.

Note RefreshCondition should only evaluate to true when you want

the task flow to refresh or restart. Once the task flow is refreshed, the EL
expression used for RefreshCondition should return false. Failing to do so
will cause the task flow to restart for each post back. The easiest solution for
such cases is to keep the EL expression in a request scoped memory area so
that the refresh flag value will not survive the next request.

[411]

http://www.oracle.com/technetwork/developer-tools/adf/uishell-093084.html
http://www.oracle.com/technetwork/developer-tools/adf/uishell-093084.html

Taking a Closer Look at the Bounded Task Flow

The following screenshot illustrates the usage of RefreshCondition for a
dynamic task flow binding:

taskFlow - dynamicEmpRegion - Properties
Q Find 2
-1 Common
aid*= |dynamicErnpRegion |
o parametershMap: |#{viewScope.DynamicTaskFIowBean.parameherMap} | s
Refresh: | <default> (default) '| >
o RefreshCondition: |:{requesﬁcope.deptchanged} | w
o taskFlowld = |S{viewScope.DynamicTaskFIowBean.dynamicTaskFIDwId} |
activation: | <default> {immediate) '| g
active: | | ~
1 Parameters
+] Customization
+| Other

* Refreshing the task flow when the input parameter value changes: To
refresh (restart) a task flow for input parameter value changes, set Refresh
= "ifNeeded" for the corresponding task flow binding executable. Note that
this flag is applicable only if the task flow binding defines input parameters.

If the task flow binding uses an input parameters map instead of individual
parameter definitions for passing parameter values, you must use
RefreshCondition = #{EL expression} to refresh the binding.

Note that you cannot use both Refresh and RefreshCondition for

refreshing the task flow binding. If you specify both, the Refresh flag
takes precedence.

Displaying task flows using a pop up
component

While discussing about task flow call activity, we have seen the out of box support
from ADF for running a bounded task flow built with complete JSF pages as dialog.
However ADF Controller cannot run a task flow that uses page fragments as dialog.
You can work around this limitation by adding a region inside a pop up as follows.

[412]

Chapter 10

To display a bounded task flow with page fragments in a pop up, drop the Popup
component onto the JSF page and then add a panel window to the pop up. The panel
window component displays contents inside a window and does not display any
predefined action buttons in the window. You can drop the desired bounded task
flow with page fragments as a region into the panel window.

The following JSF code illustrates the use of the af : popup component for displaying
a task flow.

<!-- Popup with a region that contains a bounded task flow -->
<af:popup childCreation="deferred" autoCancel="disabled" id="pl">
<af:panelWindow id="pwl" title="Demo">
<af:region
value="#{bindings.mytaskflowdefinition.regionModel}"
id="r1i"/>
</af :panelWindow>
</af :popup>
<!-- Button for displaying popup -->
<af:commandButton text="Display Task Flow" id="cbl™"
action="tf3" partialSubmit="true" immediate="true">
<af : showPopupBehavior popupId="pl" triggerType="action"/>
</af:commandButton>

Lazy activation for a task flow when displayed

in a pop up

When the parent JSF page is of a Facelet type and the activation flag for the task
flow executable is set as deferred, then the framework will postpone the activation
of the task flow until the region component is added to the pop up. The addition of
child components is controlled by setting childCreation = "deferred" for the

af :popup. With the deferred flag, the child components will be added only when a
pop up is shown to the user.

If the parent page is a JSPX page (not Facelet), then you should use activation and
active flag for lazy initialization of task flow. We have discussed these properties under
the topic Lazy loading of an ADF region, in this chapter. When you use an EL expression
that evaluates to a boolean flag as a value for an active flag, the memory scope used

for holding the condition in the EL expression should be either pageFlowScope or
session scope. You cannot use a request scope variable to build the condition in

the EL, because the request scope is live only for the current requests and for each
request, a new request scope will be created. If you use a request scope variable to
build the condition, then during the postback from the activated task flow, the EL will
be evaluated to false. Note that the view scope will not work when you use a pop up as
the dialog window cannot access the view scope variable set by the parent page.

[413]

Taking a Closer Look at the Bounded Task Flow

In the following example, the task flow becomes active when the activeFlag stored
in the pageFlowScope memory scope is set to true.

<taskFlow id="employeetaskflowdefinitionl"

taskFlowId = "/WEB-INF/employee-task-flow-definition.xml#employee-
task-flow-definition"

xmlns = http://xmlns.oracle.com/adf/controller/binding

activation="conditional"

active = "#{empty pageFlowScope.activeFlag ? false : pageFlowScope.
activeFlag}"/>

Using a contextual event for
communicating to an ADF region

A Fusion web page can have multiple task flows added as region components.

The task flows added in regions works independent to each other and with limited
interactions with the parent page. What if you want a region to respond to some user
actions in the parent page? How do you establish a channel for passing messages or
data from the containing page to the task flow activity displayed in the view port

of a region component?

Oracle ADF provides a Contextual Events framework for handling such scenarios.
The contextual event enables communication between the following items:

* Parent page to region (and vice versa)

* Region to region

Contextual event model

Contextual event model is based on a publisher subscriber pattern. The event
framework allows you to define custom event types and wire them with standard Ul
events through the binding container. Whenever a Ul event is raised, the framework
will trigger the associated contextual event as well. The contextual event dispatcher
takes care of the queuing and propagating of events to the registered subscribers.
The following diagram illustrates the contextual event model and its key players
when used for region to region communication.

[414]

http://xmlns.oracle.com/adf/controller/binding
http://xmlns.oracle.com/adf/controller/binding

Chapter 10

Event Publisher

<af:region>
* Departmentld 10
* DepartmentName | Office Administration
Managerld 200
Locationld | 1800
Next Last

First Previous

<faf:region>

Event
Dispatcher

h

Event Subscriber

Queue Event

<af:region>
& * Employeeld 200

FirstName Jennifer
* LastName Whalen
* Email JWHALEN

Managerld 101

First Previous Next Last

<faf:region>

Modified Department Name Office Administration <€

o

Process Event

Using a contextual event

Unlike JSF events, contextual events are very dynamic and flexible in nature. The
contextual event model allows you to choose the event types, payload, and event
publishers. An event can be subscribed to by multiple interested parties.

To use a contextual event, you will have to define an event publisher and subscribers

as explained in the next sections.

[415]

Taking a Closer Look at the Bounded Task Flow

Defining an event publisher

JDeveloper IDE allows you to declaratively define contextual event and wire the
event to a producer component. To define a contextual event for a Ul component,
perform the following steps:

1. Select the desired component in the JSF page design editor and then navigate
to the Contextual Events section in the Property Inspector window. This is
located inside the Behavior section.

2. Click on the green plus icon to add a new event entry. In the Publish
Contextual Event dialog window, you can either choose to create a new
event or use an existing event.

3. To define a new event, enter the event name and type (if the event type is
not pre-populated). The following are the default contextual event types
supported for various components:

Event Type Description

Currency Change Event This event can be published by any tree, table, or list
navigator binding in the binding container.

You may use this event type with any data bound

table, tree table, or list control (for example,
selectOneChoice) in the Ul The contextual event
associated with this event type is fired when the current
selection in the underlying data model changes at
runtime.

Value Change Event This event can be published by any attribute binding in
the binding container.

You may use this event type with any data bound editable
component in the UL The contextual event associated with
this event type is fired when the attribute value changes

at runtime.

Action Event This event can be published by any action binding.

You may use this event type with any actionable
component such as the command button in the UL The
contextual event associated with this event type is fired
when the user actions the component at runtime.

4. Select the Payload tab to specify the custom data that you want to pass as
event payload for use by the event subscribers.

[416]

Chapter 10

5. Select the Pass Custom Value checkbox and then select the payload data
type. Based on the payload type selection, IDE will display various options
to select the payload data. The payload can take the following types: page
binding data, return value from managed bean and data control method,
string literal, or any other EL expression. Optionally, you can specify raise
conditions for the event using a Groovy expression in the Raise Condition
tab. You can document the event in the Documentation tab.

6. Click on OK to save changes.

While defining the contextual event for a value change event or for a
currency change event, mostly you do not need to specify any event
payload. Why is that so?

M If you do not specify any payload while defining the contextual
event publisher for a value change event on an attribute, then
Q the framework will pass oracle.adf .model.binding.
DCBindingContainerValueChangeEvent as a default event
payload at runtime. Similarly, the default payload type for a
row currency change event is oracle.adf .model .binding.
DCBindingContainerCurrencyChangeEvent.

The following screenshot illustrates the contextual event definition for a value
change event. This event is defined for the department name field in the JSF page.

Publish Contextual Event @

Publish a new contextual event, or select and configure an existing one for this
usage.

2) Create Mew Event () Select Existing Event

Mame: |DepartmnetChanged

Payload Raise Condition Documentation
Add Custom PayLoad Value

Pass Custom Value from: |Page Data e

Available Data Bindings:

E deptcePageDef

-l HRServiceAppModuleDataControl
=[] DepartmentsIterator

H Departmentld

Deper ineniiame |

Managerld

=58 Locationld

|S{h|ndmgs.Deparhnann\lame .inputvalue}

Help OK Cancel

[417]

Taking a Closer Look at the Bounded Task Flow

In this example, the DepartmentName attribute binding value is set as an event
payload. Note that this is done just to illustrate how to supply the custom event
payload. If you do not set the event payload explicitly, the framework supplies
DCBindingContainerValueChangeEvent as the payload which has APIs to read
the new value as well as the current row.

There is no direct support for specifying multiple payloads for an
M event. To pass multiple payloads for an event, you should wrap
Q them in a custom Java object or in a java.util.Map object and
return it either using a method in a managed bean or using a method
exposed in a data control.

Defining an event subscriber

Subscribing to a contextual event involves two subtasks.

* Defining an event handler method

* Subscribing to desired events

Defining an event handler method

You can designate an operation exposed through a data control or a method defined
in a managed bean as handler methods for contextual events. A handler method can
take any number of arguments. The method signature depends on the event payload
and use case specific requirements. The following is an example for a contextual
event handler method that takes the string type as payload:

public class ContextualEventEHandlerBean {
//Event handler method
public void deptNameChanged (String deptName) {
//Business logic goes here
this.departmentName= deptName;
refreshDeptComponent () ;

Once you defined an appropriate handler method with the right signature in a plain
Java class, you will have to create a data control for it in order to refer to it from an
ADF binding layer. To create a data control, select the appropriate Java class, right-
click and choose Create Data Control. You can also make use of methods exposed
through the application module as event handlers.

[418]

Chapter 10

The next step is to generate a method action binding in the consuming view's page
definition file. To generate a method action binding for a data control method,
perform the following steps:

1. Open up the desired page definition file in the overview editor.

2. Inthe Bindings panel, click on the green plus icon to create a new
binding entry.

In the Insert Item dialog window, select Generic Bindings | methodAction.

In the Create Action Binding dialog window, select the appropriate method
and click on OK to save changes.

If you want to use the method in a managed bean as an event handler, then the
method action binding generation is bit tricky as there isn't a direct editor support
for the same. You may need to add it manually as shown in the following code.

The methodAction binding syntax referring managed method syntax is as follows:

<methodAction DataControl="<DataControlName>" id="<methodAction
identifier>"

InstanceName="${<bean instance name>}" MethodName="<event handler
method name in the bean>">

<NamedData NDName="<param name>" NDType="<Java type>"/>
</methodActions>

The DataControl name in the previous binding definition is not related to the
managed bean instance that we supplied as the value for InstanceName . It could be
any data control instance used in the page definition and is required to handle any
exception that might occur during invocation. The bean InstanceName should use
the immediate evaluation syntax, that is, ${bean instance name} instead of
#{bean instance name}.

The following is an example:

<methodAction DataControl="HRServiceAppModuleDataControl"
id="DeptNameChangedHandler"
InstanceName="${viewScope.ContextualEventEHandlerBean}"
MethodName="deptNameChanged" >
<NamedData NDName="deptName" NDType="java.lang.String"/>
</methodActions>

[419]

Taking a Closer Look at the Bounded Task Flow

Subscribing to desired events

To consume a contextual event from a region or from a parent page, perform the
following steps:

1.
2.

4.

Open up the desired page definition file in the overview editor.

Select Contextual Event | Subscribers. Click on the green plus icon on the
Event Subscribers panel to register a new subscriber.

In the Subscribe to Contextual event dialog window, enter the event name
that you want to subscribe to. If you are subscribing from a parent page, you
can use the Search button to locate the event instead of manually entering
the name. Optionally, specify the publisher (producer region) for the event.
Note that this field is enabled only when IDE can locate the producer. By
default a subscriber is set to listen to any producer which is denoted by
region = "*" (displayed as <Any> in the editor) in the eventMap definition
present in the page definition file. To specify an event handler, click on

the search icon close to the Handler field and in the Select Handler dialog
window. Select an appropriate method action that you defined for handling
events. Enter the parameters' Name and Value for the method handler. To
use the event payload as a value for parameter, specify the EL expression as
#{data.payLoad}. Note that you can also use the Variables dialog window
to declaratively specify the payload EL expression. Optionally specify
Handle Condition.

Click on OK to save changes.

The following screenshot illustrates the subscriber definition for the
DeptNameChanged event. The Consumer Parameters section contains
the handler method parameter name and value.

[420]

Chapter 10

Edit Subscription Contextual Event @

Subscribe to Publisher event and select Handler

Ewvent: DeptMameChanged | %

Handler: »&

r Parameters r Handle Condition |

Consumer Parameters + X
Name Value
deptiame #{data.payLoad}

Help OK Cancel

Remember that if you do not specify any payload while defining a contextual event
publisher for the value change event, the framework will implicitly pass an oracle.
adf .model.binding.DCBindingContainerValueChangeEvent object as an event
payload. Similarly, for a currency change event, the default payload type is oracle.
adf .model .binding.DCBindingContainerCurrencyChangeEvent. You can have
an event subscriber with appropriate argument types to read these implicit payload
objects. The following code snippet illustrates a sample event handler method that
takes an implicit DcBindingContainerValueChangeEvent object as payload:

//In event handler Java bean class

public void implicitPayLoadHandlerMethod (Object payLoadObj) {
DCBindingContainerValueChangeEvent payload = (
DCBindingContainerValueChangeEvent)payLoadObj;

//Read the new value

Object newValue = payload.getNewValue () ;
//Following line reads the row used in event producer
//Row row= payload.getRow ()

//Business logic goes here...

[421]

Taking a Closer Look at the Bounded Task Flow

Contextual event propagation at runtime

When a region triggers a contextual event, it's first propagated to the producer
region itself. Then the event is bubbled up to the parent container, up to the root
level. While bubbling to the parent container, the framework will see whether any
region is referenced in the parent container and if so, the event is bubbled down to
the referenced child regions as well. Once the event propagation reaches the topmost
container, the framework starts dispatching the event to binding containers that have
wildcard regions as event producers.

The framework allows you to turn off the event dispatch to regions that have
subscribed to all publishers with the producer region set to any (*). The following
are the details:

To turn off the event dispatch at page level, set DynamicEventSubscriptions
= "false" in the page definition file. The following is an example:

<pageDefinition xmlns="http://xmlns.oracle.com/adfm/uimodel"
version="11.1.2.61.83" id="empcePageDef"
DynamicEventSubscriptions="true">

Dynamically adding multiple regions to a
page

ADF allows you to add or remove regions to a page at runtime. This feature is useful
if you do not know the number of regions that render in the page at design time.

For example, consider a page with panel tabbed display, each tab holding a region.
An end user can add or remove tabs at runtime. This section discusses a solution for
such use cases.

You can use a page definition file's multiTaskFlow element to reference a list of
bounded task flows that are added at runtime. Each region in the Ul may hold a
reference to a task flow in the list. The following are the implementation details:

1. Implementing the logic to return a task flow binding attributes list.

The first step is to build a managed bean to return a

dynamic task flow list containing oracle.adf.controller.
binding.TaskFlowBindingAttributes instances. Each
TaskFlowBindingAttributes entry describes a task flow added at runtime.
The following is an example for TaskFlowBindingAttributes:
TaskFlowBindingAttributes tfBindingAttrib2 = new
TaskFlowBindingAttributes() ;

tfBindingAttrib2.setId ("region2") ;

[422]

Chapter 10

tfBindingAttrib2.setTaskFlowId (

new TaskFlowId (
"/WEB-INF/multitaskflow/emp-task-flow-definition.xml",
"emp-task-flow-definition")) ;

//Task flow parameters set through EL expression

tfBindingAttrib2.setParametersMap (
"#{pageFlowScope.MultiTaskflowBean.parameterMap}") ;

You can specify parameters for a dynamically added
task flow by calling set ParametersMap () on the
N TaskFlowBindingAttributes instance as shown in

~ the following;:
//Parameter is set as EL expression

pointing to java.util.Map tfBindingAttrib.
setParametersMap ("#{pageFlowScope.
MultiTaskflowBean.parameterMap}") ;

An example for a managed bean returning a list for
TaskFlowBindingAttributes is given in the following code snippet.

In the code snippet the buildTaskflowBindings () method adds
TaskFlowBindingAttributes to the taskFlowBindings list at runtime
in response to the action event for a button in the Ul The order of this list
defines the order of the region objects in the multitask flow binding.

//In managed bean class
public class MultiTaskflowBean {

private Map<String, Object> parameterMap =
new HashMap<String, Objects>();

private List<TaskFlowBindingAttributes> taskFlowBindings =
new ArrayList<TaskFlowBindingAttributess () ;

/**

* Build task flow bindings at runtime in response to

* button click. You can do this from any action event.

*/

public void displayTaskflows (ActionEvent actionEvent)
buildTaskflowBindings () ;

/**
* This constructs TaskFlowBindingAttributes list dynamically

*/

[423]

Taking a Closer Look at the Bounded Task Flow

public void buidTaskflowBindings () {

//Define TaskFlowBindingAttributes that holds
// dept-task-flow-definition
TaskFlowBindingAttributes tfBindingAttribl = new
TaskFlowBindingAttributes () ;
//Set identifier for the binding
tfBindingAttribl.setId ("regionl") ;
//Set task flow id
tfBindingAttribl.setTaskFlowId (
new TaskFlowId (
"/WEB-INF/dept-task-flow-definition.xml",
"dept-task-flow-definition")) ;
taskFlowBindings.add (tfBindingAttribl) ;

//Define TaskFlowBindingAttributes that holds
//emp-task-flow-definitionn
TaskFlowBindingAttributes tfBindingAttrib2 = new
TaskFlowBindingAttributes () ;
tfBindingAttrib2.setId ("region2") ;
tfBindingAttrib2.setTaskFlowId (
new TaskFlowId("/WEB-INF/emp-task-flow-definition.xml",
"emp-task-flow-definition")) ;

//Init input param map for the task flow

initPramaMap () ;

//Pass parameters to task flow

tfBindingAttrib2.setParametersMap (
"#{pageFlowScope.MultiTaskflowBean.parameterMap}") ;

taskFlowBindings.add (tfBindingAttrib2) ;

* Parameters used in dynamically added taskflow.
* EL #{pageFlowScope.MainBean.parameterMap} refers this map.
* DepartmentId is hard coded in this sample. In real life
* application you will recreate this Map dynamically each
* time when you rebuild TaskFlowBindingAttributes list.
*/
public Map getParameterMap() ({

return parameterMap;

[424]

Chapter 10

//Initialize the input parameter map for a task flow
private void initPramaMap () {
parameterMap.put ("DepartmentId", new Integer (80)) ;
}
/**
* @return TaskFlowBindingAttributes list
*/
public List<TaskFlowBindingAttributes> getTaskFlowBindings () {
return taskFlowBindings;

}

//Class ends

}

Generating the executable entry for the multitask flow.

The next step is to supply the dynamic task flow list from step 1 to the
binding container. To add an executable binding for a multitask flow,
perform the following steps:

1. Open the page definition in the overview editor and select the
Bindings and Executable tab.

2. Click on the green plus icon on the Executables panel. In the
Insert Item dialog window, select ADF Task Flow Bindings in the
binding category and then select the multiTaskFlow binding in the
corresponding item list.

3. In the Insert mulitTaskFlow dialog window, enter the unique ID
for the multitask flow binding and then specify an EL expression
that returns the list of TaskFlowBindingAttributes as values
for taskFlowList. The EL expression used in this example is
#{pageFlowScope.MultiTaskflowBean.taskFlowBindings}.

Click on OK to create the necessary binding entries.

5. Select activation as deferred in the Property Inspector window.

Now the binding entry for multiTaskFlow may look like the following:

<multiTaskFlow id="multiRegionl"
taskFlowList=
"#{pageFlowScope.MultiTaskflowBean.taskFlowBindings}"

xmlns="http://xmlns.oracle.com/adf/controller/binding"
activation="deferred"/>

[425]

Taking a Closer Look at the Bounded Task Flow

3.

a1

Q we mentioned at the beginning of this book, in the Preface section. To

Adding regions that refers to multi task flow binding entries in the
JSF page.
This is the last step in this exercise. Open the JSF page and add the necessary

code for displaying dynamic regions using the multiTaskFlow bindings. You
can use the following EL syntax to refer the multitask flow binding in the Ul:

#{bindings.<multiTaskFlow Id>.taskFlowBindingList}

The following example uses the af : forEach tag to insert region components
for each element in taskFlowBindingList:
<af:forEach var="tf" items="#{bindings.multiRegionl.
taskFlowBindingList}">

<af:region value="#{tf.regionModel}" id="reg#{tf.name}"/>
</af:forEach>

While adding a region dynamically, you may need to ensure that each region
is assigned a unique identifier at runtime. This example uses the following
EL expression to generate unique identifiers for each region: id= "reg#{tf.
name}"

To alter the task flow list at runtime, call the appropriate method in the
managed bean that modifies the task flow list in response to some user
action. For instance, this example uses the MultiTaskflowBean: :display
Taskflows (ActionEvent) method (See step 1 for the managed bean source)
to alter the task flow list in response to the action event on a button.

A working example illustrating the use of a multiTaskFlow binding
for dynamically adding task flows can be found in the example code that

access the example code, open the Mult iRegionSample workspace in
JDeveloper and look for main. jsf in the ViewController project.

Distributing ADF task flow as the ADF
library

The ADF Library JAR is a very commonly used mechanism to distribute reusable
ADF artefacts such as task flows, page templates, declarative components, and
business services within the same application or across different applications. The
ADEF library follows the Java Archive (JAR) file format with some extra metadata
files for use by JDeveloper to manage dependencies.

[426]

Chapter 10

Packaging the task flow into the ADF library

To distribute a task flow as an ADF library, perform the following steps:

1.

4.

Right-click on the view controller project and select New | Deploy |
Deployment Profile. In the Create Deployment Profile dialog window,
select ADF Library Jar File as Profile Type and enter Deployment Profile
Name. Click on OK to continue.

To specify dependencies, select Library Dependencies in the Edit

ADF Library Jar Deployment Profile Properties dialog and edit the
desired dependency by clicking on the Edit Dependencies icon. In the
Edit Dependencies dialog window, select each dependent project and
specify whether to include the Build Output directly or specify the
deployment profile to the class path. The build output option will add all
the dependencies and class files to the final artefact which is fine for this
example. Select Build Output and click on OK to continue.

In the Edit ADF Library Jar Deployment Profile Properties dialog window,
select the Connections property in the list and specify how you want to
include the connection details in the ADF library. You can either include the
connection with all the connection details (excluding the password) or just
add the connection name. In both cases, the database connection needs to be
edited in the project which imports the ADF library. Optionally, you can edit
the Jar Options and ADF Validations properties.

Click on OK to save changes.

To deploy the ADF library, right-click on the view controller project that contains the
bounded task flow and then select Deploy | <Deployment Profile>.

Consuming task flows added into an ADF
library

JDeveloper provides a Resource Palette window to manage ADF libraries used in
applications. Before starting to use an ADF library, you may need to add it to the
Resource Palette window. You can open the Resource Palette window from the
Windows menu in the main menu bar or by pressing Ctrl + Shift + O. To add a new
ADF library into the resource palette, perform the following steps:

1.

2.

Click on the new folder icon in the resource palette and select New
Connection | File System in the context menu.

In the Create File System Connection dialog window, enter the connection
name and specify the directory path pointing to the folder containing the
ADF Library JAR file. This directory path could be a network path which can
be accessed by all developers working in a team. Click on OK to continue.

[427]

Taking a Closer Look at the Bounded Task Flow

Once you added the ADF library to the resource palette, it will be listed in the IDE
Connection window under the File System node.

To use the ADF library from a project, select the desired project in the Application
Navigator and then go to the IDE Connection window and select the ADF library.
Right-click on the desired JAR file and choose Add to Project in the context menu.
Behind the scenes this action creates an ADF library entry to the project libraries
and also sets up the component palette. If the library that you added to the project
contains the model project with a database connection, you may also notice

the following:

* A new database connection name used by the newly added library will
appear in the Application Resources panel. Note that you may need to
edit this connection either by specifying the connection string or password
depending upon the include setting for the connection in the ADF library
deployment profile.

* Data control from the library will be appearing in Data Controls window.

To locate the task flow exposed by the ADF library, select the ADF Library JAR in the
Component Palette drop-down list. IDE will then display the task flows and regions

in the component palette. You can drop the desired task flow or region item from the
component palette onto the desired location. The rest of the steps are the same as you
consume a task flow local to the application.

To learn more about reusing application components as an ADF library,

refer to the topic Packaging a Reusable ADF Component into an ADF Library

in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application

~ Development Framework. To access the documentation go to http://
www.oracle.com/technetwork/developer-tools/jdev/
documentation/index.html and choose Oracle JDeveloper and ADF
Documentation Library | Fusion Developer's Guide. Use the Search
option to find specific topics.

Using a train component in a bounded
task flow

A typical web application may have some business transactions that span across
multiple pages and take a sequential path to complete. Most of the rich enterprise
applications provide visual indicators pointing to the current step when the user
navigates around different activities in a multi-step process.

[428]

Chapter 10

ADF Faces provides an af : train component to display a series of stops in a
multi-step process. Each train stop displayed in the train component represents an
activity in a multi-step process flow. The following is an example for an af : train
component display at runtime:

Basic Information
Supplier Details
* Supplier Name
* Phone Number

* Emai

'.4_)? Cancel u MNext

M To learn more about the af : train component, refer to the tag
Q documentation available online at http://jdevadf.oracle.com/
adf-richclient-demo/docs/tagdoc/af train.html.

Creating a train in a bounded task flow

You can enable train stops for activities in a bounded task flow in the following
two ways:

* Enabling train support while creating a bounded task flow: When you
create bounded task flow, you can check the Create Train checkbox in the
Create Task Flow dialog window. This action will enable train stop support
for all activities in the corresponding task flow.

* Enabling train support for an existing bounded task flow: This can be
done in the following two ways:

i. Right-click on the task flow and select Train | Create Train in
the context menu.

ii. Open the task flow in the overview editor, select the Behavior
tab and check the Train checkbox. Alternatively, you can set
the Train property in the Property Inspector to true.

[429]

Taking a Closer Look at the Bounded Task Flow

Once you enable the train for a task flow, all task flow activities will bear a visual
indicator representing train stop support for the task flow. Note that this action will
just enable train support across activities in a task flow. However, to display the
train component on view activities, you have to explicitly add the appropriate train
component on to the page as explained in the following section.

To display the train component in a JSF page, double-click on the desired view
activities in the task flow diagram editor. JDeveloper will display the Create ADF
Page dialog window if the view activity is not yet associated with a page. Drop
Train or the Train Button Bar component from the Component Palette panel onto
the page. In the Property Inspector window for the train component, enter Value as:
#{controllerContext.currentRootViewPort.taskFlowContext.trainModel}.

Setting display names for train stops

To set display names for train stops generated for the view activities in a bounded
task flow, select the desired view activity in the task flow diagram editor. In the
Property Inspector window, expand the Description section and enter Display
Name for the train stop. If you want to localize the display name of the train

stop, use the following EL expression format to refer to a specific key in the
resource bundle: #{adfBundle ['ResourceBundleName'] ['SomeKey'] }.The
following is an example: #{adfBundle [' com.packtpub.adfguide.ch9.view.
ResourcesGenBundle'] ['CreateEmp'] }

Customizing the display for train stops

ADF allows you to customize the train display using the af :navigationPane
component. The hint attribute in af :navigationpPane decides the display
component. The following are the possible hints for navigationPane components:
bar, buttons, choice, list, and tabs. The following is an example illustrating the usage
of af :navigationPane for displaying customized train stops:

<af:navigationPane hint="tabs"
value="#{controllerContext.currentViewPort.
taskFlowContext.trainModel}"
var="trainNode" id="npl">
<f:facet name="nodeStamp">
<af:commandNavigationItem
text="#{trainNode.textAndAccessKey}" id="cnil"
visited="#{trainNode.visited}"
disabled="#{trainNode.disabled}"
action="#{trainNode.action}"
selected="#{TrainBean.currentTab}" />
</f:facet>
</af:navigationPane>

[430]

Chapter 10

You can directly map the properties of af : commandNavigationItem to the
appropriate properties exposed by a train node in the train model. If required, you
can also provide custom implementation for any of these properties. For example,
the selected property of af :navigationPane in this example is an EL expression
wired to the isCurrentTab () method in TrainBean. This method returns true

for the selected navigation tab. The code for the currentTab property defined in
TrainBean is as follows:

//In managed bean class
public boolean isCurrentTab () {
//Get current stop
TaskFlowTrainModel model =
ControllerContext.getInstance () .
getCurrentViewPort () .getTaskFlowContext () .
getTaskFlowTrainModel () ;
TaskFlowTrainStopModel currentStop =
model.getCurrentStop () ;

//Following code helps you to get current
//view activity in the task flow
FacesContext fctx = FacesContext.getCurrentInstance() ;
ELContext elctx = fctx.getELContext () ;
Application app = fctx.getApplication() ;
ExpressionFactory expressionFactory =
app.getExpressionFactory () ;
//trainNode is the name of the variable
//attribute defined in af:navigationPane
ValueExpression ve = expressionFactory.
createValueExpression (elctx, "#{trainNode}",
Object.class) ;
TaskFlowTrainStopModel renderedTrainNode =
(TaskFlowTrainStopModel) ve.getValue (elctx) ;
String renderedActivityId =
renderedTrainNode.getLocalActivityId() ;
//Check whether renderedActivityId is same as current stop
if (renderedActivityId.
equalsIgnoreCase (currentStop.getLocalActivityId())) {
return true;

}

return false;

[431]

Taking a Closer Look at the Bounded Task Flow

Programmatically navigating between train stops

Apart from using declarative navigation features provided by the train component,
you can also use train model APIs to programmatically navigate between train stops.
The following example illustrates train model APIs used for navigating to the next
stop in the train model:

//In TrainBean bean class
public String nextTrainStop()
//Get current stop
TaskFlowTrainModel model =
ControllerContext.getInstance () .getCurrentViewPort () .
getTaskFlowContext () .getTaskFlowTrainModel () ;
TaskFlowTrainStopModel currentStop = model.getCurrentStop () ;
//Next train stop
TaskFlowTrainStopModel nextStop = model.getNextStop (currentStop) ;
if (nextStop != null)
return nextStop.getOutcome () ;
else
return currentStop.getOutcome () ;

}

The following commandButton code EL binds the action attribute with the previously
mentioned method in TrainBean. When the user clicks on the button at runtime, the
system navigates to the next available train stop.

<af:commandButton text="Go to Next Stop" id="b5"
action="#{pageFlowScope.TrainBean.nextTrainStop}"/>

Executing methods while navigating between train
stops

In the last chapter you learned about using method call activities to initialize a
view. Navigation to the method activity is decided based on the outcome from the
preceding activity. What if you want to execute a method activity before a specific
train stop? You will not be able to directly put a method call activity before a train
stop because ADF does not allow you to mark a method call activity as a train stop.

To execute a method call activity before a specific train stop, perform the following:

[432]

Chapter 10

Select the desired train stop in the task flow diagram editor. In the Property
Inspector window, expand the Train Stop section and specify an Outcome value
for the train stop. You will use this outcome to define the control flow case to the
method activity (or to any valid task flow activity) that you want to execute before
the train stop. Draw a wildcard control flow rule to the method activity and specify
the From Outcome for the control flow case. The From Outcome value should be the
same as the outcome, set for the train stop.

At runtime, whenever the control navigates to a train stop, the framework will check
for any navigation case that matches the outcome set for the train stop. And if any
matching navigation case is found, then the control flow takes that path. You can use
this approach for overriding default navigation provided by the framework.

For example, in the following task flow, the user is allowed to navigate to empView
from deptView using the train component only if the currently selected department
row has more than five employee rows (display threshold). This check is done
using the method call activity, hasMinimumEmployees and if the number

of employees is less than the display threshold, the system will not allow the
navigation. To enable automatic execution of the method call before displaying
empView, the outcome set for the empView train stop is used in defining the
control flow case to the hasMinimumEmployees method call activity. This is
shown in the following screenshot:

-
e
e | — — - —-—— - | - - -
L) | =) L J
deptiew empView emp-detail-task-flow-definition
frue
false
& continue 5 |1l hasMinimumEmployees E EE
rauter hasMinumumEmployees

[433]

Taking a Closer Look at the Bounded Task Flow

At runtime, the system displays deptView to the user as the default view. When

the user clicks on the train stop for accessing empView, the framework executes

the method activity hasMinimumEmployees and if this method returns as true, the
system navigates to empView, otherwise the system takes the user back to deptView.

Transaction management in a bounded
task flow

One of the great advantages of a bounded task flow is its out of the box support for
declarative transaction management. Without this support you may end up writing a
lot of plumbing code for managing transactions. In this section, we will take a closer
look at the declarative transaction settings available for a task flow and how the
framework manages the transaction behind the scenes.

The bounded task flow supports the following declarative transaction settings:

* No Controller Transaction: The called bounded task flow does not
participate in any declarative transaction management. However you can
programmatically manage the transaction, if required. This is explained in
the next section entitled Programmatically managing transactions for a task flow.

* Always Begin New Transaction: The called task flow starts a new transaction.

* Always Use Existing Transaction: The called task flows participate in the
existing transaction.

* Use Existing Transaction If Possible: The called task flow will join the
existing transaction from the caller, if it exists, otherwise it starts a new
transaction on entry to the task flow.

A bounded task flow also has a declarative option to share data control with the
calling task flow. When you mark a data control as shared, the called task flow
reuses the same database connection instance and data control instances from the
calling task flow. The following screenshot displays the default transaction settings
as well as the data control sharing option for a bounded task flow:

-] Transaction

| <Mo Controller Transaction > "|

|E] share data contrals with calling task flow

[] Mo save point an task flow entry

[434]

Chapter 10

What happens at runtime?

Now that you have seen the transaction value setting for a task flow, this section
will explain to you how the framework manages the transaction behind the scenes
at runtime.

When you run a page with a nested region, the framework does the following
behind the scenes.

During the Before Restore View phase of the JSF lifecycle, the framework creates

a new root view port for the top level page. During the view port initialization, the
framework will build a data control frame to hold data controls and bind containers
used in the root view port (parent page). You can consider a data control frame as a
bucket for holding data controls used in the binding container. Note that each data
control frame will use a local transaction handler to manage all transaction related
activities such as commit and rollback of transactions, save point creation, and
restore. The transaction handler will delegate the calls to the respective data controls
as and when required.

During the Render Response phase of the JSF lifecycle, if the page contains a region
while encoding the region tag, the framework creates a new child view port as well
as a separate controller state for the child region and then starts processing the task
flow as explained in the following:

* If the child task flow is configured to share data control with the calling task
flow, then the framework will use the data control frame from the parent
page (caller) to serve the child region as well. Alternatively, if the data
control scope for the child task flow is set to isolated, the framework will
create a new data control frame for the task flow and add it as a child to the
parent data control frame.

* If the transaction for the task flow is set to Always Begin New Transaction,
then the framework will open a new transaction on the data control frame. If
the data control frame has already started a transaction, then the framework
throws an error and stops further processing.

* If the transaction for the task flow is set to Always Use Existing Transaction,
then the framework will ensure that the transaction is already started on
the data control frame a